Efficacy of a curcumin extract (Curcugen™) on gastrointestinal symptoms and intestinal microbiota in adults with self-reported digestive complaints: a randomised, double-blind, placebo-controlled study
Tóm tắt
There is preliminary evidence to suggest curcumin can alleviate digestive symptoms in adults with self-reported digestive complaints and irritable bowel syndrome. However, in all these trials, curcumin was used as a component of a multi-herbal combination and there were consistent concerns associated with risk of bias in most studies. The goal of this study was to investigate the effects of a curcumin extract (Curcugen™) on gastrointestinal symptoms, mood, and overall quality of life in adults presenting with self-reported digestive complaints. Moreover, to determine the potential therapeutic mechanisms of action associated with curcumin, its effects on intestinal microbiota and small intestinal bowel overgrowth (SIBO) were examined.
In this 8-week, parallel-group, double-blind, randomised controlled trial, 79 adults with self-reported digestive complaints were recruited and randomised to receive either a placebo or 500 mg of the curcumin extract, Curcugen™. Outcome measures included the Gastrointestinal Symptom Rating Scale (GSRS), intestinal microbial profile (16S rRNA), Depression, Anxiety, and Stress Scale – 21 (DASS-21), Short Form-36 (SF-36), and SIBO breath test.
Based on self-report data collected from 77 participants, curcumin was associated with a significantly greater reduction in the GSRS total score compared to the placebo. There was also a greater reduction in the DASS-21 anxiety score. No other significant between-group changes in self-report data were identified. An examination of changes in the intestinal microbial profile and SIBO test revealed curcumin had no significant effect on these parameters. Curcumin was well-tolerated with no significant adverse events.
The curcumin extract, Curcugen™, administered for 8 weeks at a dose of 500 mg once daily was associated with greater improvements in digestive complaints and anxiety levels in adults with self-reported digestive complaints. Compared to the placebo, there were no significant changes in intestinal microbiota or SIBO; however, further research using larger samples and testing methods that allow more detailed microbial analyses will be important. An investigation into other potential mechanisms associated with curcumin’s gastrointestinal-relieving effects will also be important such as examining its influence on the intestinal barrier function, inflammation, neurotransmitter activity, and visceral sensitivity.
Australian New Zealand Clinical Trials Registry, Trial ID.
Từ khóa
Tài liệu tham khảo
Prasad S, Aggarwal BB: Turmeric, the golden spice: from traditional medicine to modern medicine. In: Herbal medicine: biomolecular and clinical aspects. edn. Edited by nd, Benzie IFF, Wachtel-Galor S. Boca Raton: CRC Press/Taylor & Francis 2011.
Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19(8):717–29.
Sahebkar A, Henrotin Y. Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med. 2015;17(6):1192–202.
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010;30:173–99.
Lopresti AL, Maes M, Hood SD, Maker GL, Drummond PD. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord. 2014;167:368–75.
Fusar-Poli L, Vozza L, Gabbiadini A, Vanella A, Concas I, Tinacci S, Petralia A, Signorelli MS, Aguglia E. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15):2643–53.
Sarker MR, Franks SF. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience. 2018;40(2):73–95.
Lopresti AL. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv Nutr. 2018;9(1):41–50.
Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS. A meta-analysis of the clinical use of curcumin for irritable bowel syndrome (IBS). J Clin Med. 2018;7(10):298.
Grammatikopoulou MG, Gkiouras K, Theodoridis X, Asteriou E, Forbes A, Bogdanos DP. Oral adjuvant curcumin therapy for attaining clinical remission in ulcerative colitis: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2018;10(11):1737.
Dulbecco P, Savarino V. Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol. 2013;19(48):9256–70.
Yu J, Xu WH, Sun W, Sun Y, Guo ZL, Yu XL. Curcumin alleviates the functional gastrointestinal disorders of mice in vivo. J Med Food. 2017;20(12):1176–83.
Chen YM, Chiu WC, Chiu YS, Li T, Sung HC, Hsiao CY. Supplementation of nano-bubble curcumin extract improves gut microbiota composition and exercise performance in mice. Food Funct. 2020;11(4):3574–84.
Peterson CT, Rodionov DA, Iablokov SN, Pung MA, Chopra D, Mills PJ, Peterson SN. Prebiotic potential of culinary spices used to support digestion and bioabsorption. Evid Based Complement Alternat Med. 2019;2019:8973704.
Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients. 2017;9(10):1146.
Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN, Sivamani RK. Effects of turmeric and curcumin dietary supplementation on human gut microbiota: a double-blind, randomized, placebo-controlled pilot study. J Evid Based Integr Med. 2018;23:2515690X18790725.
Shimouchi A, Nose K, Takaoka M, Hayashi H, Kondo T. Effect of dietary turmeric on breath hydrogen. Dig Dis Sci. 2009;54(8):1725–9.
Lopresti AL, Gupta H, Smith SJ. A poly-herbal blend (Herbagut(R)) on adults presenting with gastrointestinal complaints: a randomised, double-blind, placebo-controlled study. BMC Complement Altern Med. 2018;18(1):98.
Kulich KR, Madisch A, Pacini F, Pique JM, Regula J, Van Rensburg CJ, Ujszaszy L, Carlsson J, Halling K, Wiklund IK. Reliability and validity of the gastrointestinal symptom rating scale (GSRS) and quality of life in reflux and dyspepsia (QOLRAD) questionnaire in dyspepsia: a six-country study. Health Qual Life Outcomes. 2008;6:12.
Svedlund J, Sjodin I, Dotevall G. GSRS--a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci. 1988;33(2):129–34.
Brown TA, Chorpita BF, Korotitsch W, Barlow DH. Psychometric properties of the depression anxiety stress scales (DASS) in clinical samples. Behav Res Ther. 1997;35(1):79–89.
Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83.
McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.
Hays RD, Sherbourne CD, Mazel RM. The RAND 36-item health survey 1.0. Health Econ. 1993;2(3):217–27.
Tabachnick BG, Fidell LS. Using multivariate statistics. 5th ed. Boston: Allyn; 2007.
Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, Moayyedi P. Gut microbiota in patients with irritable bowel syndrome-a systematic review. Gastroenterology. 2019;157(1):97–108.
Duan R, Zhu S, Wang B, Duan L. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S rRNA-targeted sequencing: a systematic review. Clin Transl Gastroenterol. 2019;10(2):e00012.
Wang L, Alammar N, Singh R, Nanavati J, Song Y, Chaudhary R, Mullin GE. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J Acad Nutr Diet. 2020;120(4):565–86.
Ghosh SS, He H, Wang J, Gehr TW, Ghosh S. Curcumin-mediated regulation of intestinal barrier function: the mechanism underlying its beneficial effects. Tissue Barriers. 2018;6(1):e1425085.
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol (1985). 2018;124(2):330–40.
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20(9):2293.
Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E, Caccavo D. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res. 2000;6(3):205–14.
Pasternak BA, D'Mello S, Jurickova II, Han X, Willson T, Flick L, Petiniot L, Uozumi N, Divanovic S, Traurnicht A, et al. Lipopolysaccharide exposure is linked to activation of the acute phase response and growth failure in pediatric Crohn’s disease and murine colitis. Inflamm Bowel Dis. 2010;16(5):856–69.
Fluitman S, Denys D, Vulink N, Schutters S, Heijnen C, Westenberg H. Lipopolysaccharide-induced cytokine production in obsessive-compulsive disorder and generalized social anxiety disorder. Psychiatry Res. 2010;178(2):313–6.
Gao F, Shen J, Zhao L, Hao Q, Yang Y. Curcumin alleviates lipopolysaccharide (LPS)-activated neuroinflammation via modulation of miR-199b-5p/IkappaB kinase beta (IKKbeta)/nuclear factor kappa B (NF-kappaB) pathway in microglia. Med Sci Monit. 2019;25:9801–10.
de Gomes MG, Teixeira FEG, de Carvalho FB, Pacheco CO, da Silva Neto MR, Giacomeli R, Ramalho JB, Dos Santos RB, Domingues WB, Campos VF, et al. Curcumin-loaded lipid-core nanocapsules attenuates the immune challenge LPS-induced in rats: neuroinflammatory and behavioral response in sickness behavior. J Neuroimmunol. 2020;345:577270.
Huang W, Li X, Wang D, Sun Y, Wang Q, Bu Y, Niu F. Curcumin reduces LPS-induced septic acute kidney injury through suppression of lncRNA PVT1 in mice. Life Sci. 2020;254:117340.
Kano M, Muratsubaki T, Van Oudenhove L, Morishita J, Yoshizawa M, Kohno K, Yagihashi M, Tanaka Y, Mugikura S, Dupont P, et al. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci Rep. 2017;7(1):12425.
Videlock EJ, Shih W, Adeyemo M, Mahurkar-Joshi S, Presson AP, Polytarchou C, Alberto M, Iliopoulos D, Mayer EA, Chang L. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression. Psychoneuroendocrinology. 2016;69:67–76.
Mukhtar K, Nawaz H, Abid S. Functional gastrointestinal disorders and gut-brain axis: what does the future hold? World J Gastroenterol. 2019;25(5):552–66.
Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, Li X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res. 2006;1122(1):56–64.
Yu JJ, Pei LB, Zhang Y, Wen ZY, Yang JL. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. J Clin Psychopharmacol. 2015;35(4):406–10.
Crowell MD. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol. 2004;141(8):1285–93.
Abd-Rabo MM, Georgy GS, Saied NM, Hassan WA. Involvement of the serotonergic system and neuroplasticity in the antidepressant effect of curcumin in ovariectomized rats: comparison with oestradiol and fluoxetine. Phytother Res. 2019;33(2):387–96.
Lee B, Lee H. Systemic administration of curcumin affect anxiety-related behaviors in a rat model of posttraumatic stress disorder via activation of serotonergic systems. Evid Based Complement Alternat Med. 2018;2018:9041309.
Riegler G, Esposito I. Bristol scale stool form. A still valid help in medical practice and clinical research. Tech Coloproctol. 2001;5(3):163–4.
Mujagic Z, Keszthelyi D, Aziz Q, Reinisch W, Quetglas EG, De Leonardis F, Segerdahl M, Masclee AA. Systematic review: instruments to assess abdominal pain in irritable bowel syndrome. Aliment Pharmacol Ther. 2015;42(9):1064–81.
Miller LE. Study design considerations for irritable bowel syndrome clinical trials. Ann Gastroenterol. 2014;27(4):338–45.