Ảnh hưởng của khói thuốc lá đến chất lượng không khí trong nhà: việc sử dụng rêu trong giám sát sinh học

Paweł Świsłowski1, Bogusław Śmiechowicz2, Małgorzata Rajfur3
1Institute of Biology, University of Opole, Opole, Poland
2ATMOTERM SA, Opole, Poland
3Institute of Environmental Engineering and Biotechnology, University of Opole, Opole, Poland

Tóm tắt

Nghiên cứu này được thực hiện nhằm đánh giá khả năng sử dụng rêu Pleurozium schreberi như những chỉ thị sinh học về ô nhiễm khí dung trong không gian sống (bếp và phòng ngủ), với các kim loại có nguồn gốc từ khói thuốc lá từ nhiều loại thuốc lá khác nhau: thuốc lá thông thường, thuốc lá điện tử và sản phẩm thuốc lá nung nóng. Phương pháp rêu trong túi (moss-bag) được sử dụng để giám sát sinh học chủ động. Các mẫu rêu được đặt ở các không gian trong nhà này trong ba tháng và, sau giai đoạn tiếp xúc, các chất phân tích của chúng – Ni, Cu, Zn, Cd và Pb – đã được xác định bằng phương pháp quang phổ hấp thụ nguyên tử ngọn lửa (F-AAS). Kết quả được diễn giải bằng cách sử dụng các yếu tố tích lũy tương đối (RAF), hệ số biến thiên (CV) và kiểm định Wilcoxon. Kết quả của nghiên cứu cho thấy có sự khác biệt có ý nghĩa thống kê về nồng độ Zn và Cd trong khói thuốc lá từ các loại thuốc lá khác nhau. Các phân tích cho thấy rằng các sản phẩm thuốc lá nung nóng làm ô nhiễm không khí trong nhà với các kim loại, tương tự như thuốc lá thông thường và thuốc lá điện tử. Nó đã được chứng minh rằng độ tin cậy của các kết quả giám sát sinh học bị ảnh hưởng, ví dụ, bởi phương pháp chuẩn bị mẫu chỉ thị sinh học, chẳng hạn như rêu.

Từ khóa

#khói thuốc lá #ô nhiễm không khí #chỉ thị sinh học #rêu Pleurozium schreberi #kim loại nặng

Tài liệu tham khảo

Marano KM, Naufal ZS, Kathman SJ, Bodnar JA, Borgerding MF, Garner CD, et al. Cadmium exposure and tobacco consumption: biomarkers and risk assessment. Regul Toxicol Pharmacol [Internet]. Elsevier Inc.; 2012;64:243–252. Available from: https://doi.org/10.1016/j.yrtph.2012.07.008 Rajfur M, Świsłowski P, Nowainski F, Śmiechowicz B. Mosses as biomonitor of air pollution with analytes originating from tobacco smoke. Chemistry-Didactics-Ecology-Metrology. 2018;23:127–36. Pinto E, Cruz M, Ramos P, Santos A, Almeida A. Metals transfer from tobacco to cigarette smoke: evidences in smokers’ lung tissue. J Hazard Mater [Internet]. Elsevier B.V.; 2017;325:31–35. Available from: https://doi.org/10.1016/j.jhazmat.2016.11.069 Palazzi P, Hardy EM, Appenzeller BMR Biomonitoring of children exposure to urban pollution and environmental tobacco smoke with hair analysis – a pilot study on children living in Paris and Yeu Island, France. Sci Total Environ [Internet]. Elsevier B.V.; 2019;665:864–872. Available from: https://doi.org/10.1016/j.scitotenv.2019.02.177 Hossain MT, Hassi U, Imamul Huq SM. Assessment of concentration and toxicological (Cancer) risk of lead, cadmium and chromium in tobacco products commonly available in Bangladesh. Toxicol Rep [Internet]. Elsevier; 2018;5:897–902. Available from: https://doi.org/10.1016/j.toxrep.2018.08.019 Perikleous EP, Steiropoulos P, Paraskakis E, Constantinidis TC, Nena E. E-cigarette use among adolescents: an overview of the literature and future perspectives. Front Public Heal. 2018;6:1–9. National Academies of Sciences Engineering, Medicine. Public health consequences of E-cigarettes [Internet]. Stratton K, Kwan LY, Eaton DL, editors. Washington, DC: The National Academies Press; 2018. Available from:https://www.nap.edu/catalog/24952/public-health-consequences-of-e-cigarettes Royal College of Physicians. Nicotine without smoke: tobacco harm reduction [Internet]. Pediatrics. 2016. Available from: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2015-3222 Truth Initiative. Action needed on e-cigarettes. 2020. Glantz SA, Bareham DW. E-cigarettes: use, effects on smoking, risks, and policy implications. Annu Rev Public Health. 2018;39:215–35. Nguyen H V., Sheikh A. Environmental tobacco smoke exposure among electronic cigarette users. Addict Behav [Internet]. Elsevier; 2019;89:92–97. Available from: https://doi.org/10.1016/j.addbeh.2018.09.026 Aszyk J, Kubica P, Kot-Wasik A, Namieśnik J, Wasik A. Comprehensive determination of flavouring additives and nicotine in e-cigarette refill solutions. Part I: liquid chromatography-tandem mass spectrometry analysis. J Chromatogr A. 2017;1519:45–54. Aszyk J, Kubica P, Woźniak MK, Namieśnik J, Wasik A, Kot-Wasik A. Evaluation of flavour profiles in e-cigarette refill solutions using gas chromatography–tandem mass spectrometry. J Chromatogr A. 2018;1547:86–98. Sutanto E, Smith DM, Miller C, O’Connor RJ, Hyland A, Tabuchi T, et al. Use of heated tobacco products within indoor spaces: findings from the 2018 ITC Japan survey. Int J Environ Res Public Health. 2019;16:1–8. Brose LS, Simonavicius E, Cheeseman H. Awareness and use of “Heat-not-burn” tobacco products in Great Britain. Tob Regul Sci. 2018;4:44–50. Paumgartten FJR. A critical appraisal of the harm reduction argument for heat-not-burn tobacco products. Rev Panam Salud Pública. 2018;42:1–6. Glantz SA. Heated tobacco products: the example of IQOS. Tob Control. 2018;27:s3–6. Simonavicius E, McNeill A, Shahab L, Brose LS. Heat-not-burn tobacco products: a systematic literature review. Tob Control. 2019;28:582–94. Górski P. E-cigarettes or heat-not-burn tobacco products – advantages or disadvantages for the lungs of smokers. Adv Respir Med. 2019;87:123–34. Jenssen BP, Walley SC, Mcgrath-Morrow SA. Heat-not-burn tobacco products: tobacco industry claims no substitute for science. Pediatrics. 2018;141:1–5. Ludicke F, Michael Ansari S, Lama N, Blanc N, Bosilkovska M, Donelli A, et al. Effects of switching to a heat-not-burn tobacco product on biologically relevant biomarkers to assess a candidate modified risk tobacco product: a randomized trial. Cancer Epidemiol Biomarkers Prev. 2019;28:1934–43. Baran W, Madej-Knysak D, Sobczak A, Adamek E. The influence of waste from electronic cigarettes, conventional cigarettes and heat-not-burn tobacco products on microorganisms. J Hazard Mater [Internet]. Elsevier; 2020;385:121591. Available from: https://doi.org/10.1016/j.jhazmat.2019.121591 Kaunelienė V, Meišutovič-Akhtarieva M, Prasauskas T, Čiužas D, Krugly E, Keraitytė K, et al. Impact of using a tobacco heating system (THS) on indoor air quality in a nightclub. Aerosol Air Qual Res. 2019;19:1961–8. Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627:438–49. Rajfur M. Assessment of the possibility of using deciduous tree bark as a biomonitor of heavy metal pollution of atmospheric aerosol. Environ Sci Pollut Res. 2019 Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25:557–68. Gombert S, Asta J, Seaward MRD. Lichens and tobacco plants as complementary biomonitors of air pollution in the Grenoble area (Isère, southeast France). Ecol Indic. 2006;6:429–43. Szczepaniak K, Biziuk M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ. Res. 2003. Salo H, Mäkinen J. Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmos Environ. 2014;97:19–27. Zinicovscaia I, Urošević MA, Vergel K, Vieru E, Frontasyeva MV, Povar I, et al. Active moss biomonitoring of trace elements air pollution in Chisinau, Republic of Moldova. Ecol Chem Eng S. 2018;25:361–72. Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernández JA. Moss bag biomonitoring: a methodological review. Sci Total Environ [Internet]. Elsevier B.V.; 2012;432:143–158. Available from: https://doi.org/10.1016/j.scitotenv.2012.05.087 Jankowski M, Brożek GM, Lawson J, Skoczyński S, Majek P, Zejda JE. New ideas, old problems? Heated tobacco products – a systematic review. Int J Occup Med Environ Health. 2019;32:595–634. Boquete MT, Aboal JR, Carballeira A, Fernández JA. Do mosses exist outside of Europe? A biomonitoring reflection. Sci Total Environ [Internet]. Elsevier B.V.; 2017;593–594:567–570. Available from: https://doi.org/10.1016/j.scitotenv.2017.03.196 Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res. 2019;26:29620–38. Świsłowski P, Kosior G, Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res. 2021;28:10068–76. Calabrese S, D’Alessandro W, Bellomo S, Brusca L, Martin RS, Saiano F, et al. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1 – major and trace element composition. Chemosphere. 2015. Boquete MT, Aboal JR, Carballeira A, Fernández JA. Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmos Environ [Internet]. Elsevier Ltd.; 2014;86:28–34. Available from: https://doi.org/10.1016/j.atmosenv.2013.12.039 Jägerbrand AK. Dead or alive? Testing the use of C:N ratios and chlorophyll fluorescence in vertical shoot profiles to determine depth of vitality and point of senescence in populations of bryophytes. Lindbergia. 2015;38:4–13. Thermo Fisher Scientific Inc. iCE 3000 series AA spectrometers operator’s manual. 2011;44:1–1 to 7–18. Available from: www.thermoscientific.com Konieczka P, Namieśnik J. Quality assurance and quality control in the analytical chemical laboratory. Qual Assur Qual Control Anal Chem Lab. 2018. Debén S, Aboal JR, Giráldez P, Varela Z, Fernández JA. Developing a biotechnological tool for monitoring water quality: in vitro clone culture of the aquatic moss fontinalis antipyretica. Water (Switzerland). 2019;11:1–10. Culicov OA, Yurukova L. Comparison of element accumulation of different moss- and lichen-bags, exposed in the city of Sofia (Bulgaria). J Atmos Chem. 2006;55:1–12. Fernández JA, Boquete MT, Carballeira A, Aboal JR. A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Sci Total Environ. 2015;517:132–50. Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One. 2013;8:1–11. Piadé JJ, Jaccard G, Dolka C, Belushkin M, Wajrock S. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicol Reports. Elsevier Ireland Ltd. 2015;2:12–26. Fromme H, Schober W. Waterpipes and e-cigarettes: impact of alternative smoking techniques on indoor air quality and health. Atmos Environ [Internet]. Elsevier Ltd.; 2015;106:429–441. Available from: https://doi.org/10.1016/j.atmosenv.2014.08.030 Kamilari E, Farsalinos K, Poulas K, Kontoyannis CG, Orkoula MG. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Food Chem Toxicol [Internet]. Elsevier; 2018;116:233–237. Available from: https://doi.org/10.1016/j.fct.2018.04.035 Kim HJ, Shin HS. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J Chromatogr A [Internet]. Elsevier B.V.; 2013;1291:48–55. Available from: https://doi.org/10.1016/j.chroma.2013.03.035 Pappas RS, Stanfill SB, Watson CH, Ashley DL. Analysis of toxic metals in commercial moist snuff and Alaskan iqmik. J Anal Toxicol. 2008;32:281–91.