Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet

Nanoscale Research Letters - Tập 9 - Trang 1-5 - 2014
Mohamed Tahar Benabbas1, Salah Sahli1, Abdallah Benhamouda1, Saida Rebiai1
1Microsystems and Instrumentation Laboratory, Department of Electronics, Faculty of Sciences of Technology, University of Constantine 1, Constantine, Algeria

Tóm tắt

A non-thermal atmospheric pressure argon plasma jet for medical applications has been generated using a high-voltage pulse generator and a homemade dielectric barrier discharge (DBD) reactor with a cylindrical configuration. A plasma jet of about 6 cm of length has been created in argon gas at atmospheric pressure with an applied peak to peak voltage and a frequency of 10 kV and 50 kHz, respectively. The length and the shape of the created plasma jet were found to be strongly dependent on the electrode setup and the applied voltage and the signal frequency values. The length of the plasma jet increases when the applied voltage and/or its frequency increase, while the diameter at its end is significantly reduced when the applied signal frequency increases. For an applied voltage of 10 kV, the plasma jet diameter decreases from near 5 mm for a frequency of 10 kHz to less than 1 mm at a frequency of 50 kHz. This obtained size of the plasma jet diameter is very useful when the medical treatment must be processed in a reduced space. 52.50.Dg; 52.70.-m; 52.80.-s

Tài liệu tham khảo

Walk RM, Snyder JA, Srinivasan P, Kirsch J, Diaz SO, Blanco FC, Shashurin A, Keidar M, Sandler AD: Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg 2013, 48: 67–73. 10.1016/j.jpedsurg.2012.10.020 Daeschlein G, Scholz S, Ahmed R, von Woedtke T, Haase H, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Juenger M: Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect 2012, 81: 177–183. 10.1016/j.jhin.2012.02.012 Xiong Q, Lu XP, Ostrikov K, Xian Y, Zou C, Xiong Z, Pan Y: Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes: a comparative analysis. Phys Plasmas 2010, 17: 043506. 10.1063/1.3381132 Li X, Di C, Jia P, Bao W: Characteristics of a direct current-driven plasma jet operated in open air. Appl Phys Lett 2013, 103: 144107. 10.1063/1.4824305 Seo YS, Lee HW, Kwon HC, Choi J, Lee SM, Woo KC, Kim KT, Lee JK: A study on characterization of atmospheric pressure plasma jets according to the driving frequency for biomedical applications. Thin Solid Films 2011, 519: 7071–7078. 10.1016/j.tsf.2010.11.057 Kim SJ, Chung TH, Bae SH, Leem SH: Characterization of atmospheric pressure microplasma jet source and its application to bacterial inactivation. Plasma Process Polym 2009, 6: 676–685. 10.1002/ppap.200850001 Guimin X, Guanjun Z, Xingmin S, Yue M, Ning W, Yuan L: Bacteria inactivation using DBD plasma jet in atmospheric pressure argon. Plasma Sci Technol 2009, 11: 83–88. 10.1088/1009-0630/11/1/17 Kim JY, Ballato J, Foy P, Hawkins T, Wei Y, Li J, Kim SO: Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron 2011, 28: 333–338. 10.1016/j.bios.2011.07.039 Raiser J, Zenker M: Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys 2006, 39: 3520–3523. 10.1088/0022-3727/39/16/S10 Shao XJ, Jiang N, Zhang GJ, Cao ZX: Comparative study on the atmospheric pressure plasma jets of helium and argon. Appl Phys Lett 2012, 101: 253509. 10.1063/1.4772639 Hong Y, Lu N, Pan J, Li J, Wu Y, Shang KF: Characteristic study of cold atmospheric argon plasma jets with rod-tube/tube high voltage electrode. J Electrostat 2013, 71: 93–101. 10.1016/j.elstat.2012.12.009 Shao XJ, Zhang GJ, Zhan JY, Mu HB: Investigation on spurt length of atmospheric-pressure plasma jets. IEEE Trans Plasma Sci 2011, 39: 2340–2341. Xiong Q, Lu X, Ostrikov K, Xiong Z, Xian Y, Zhou F, Zou C, Hu J, Gong W, Jiang Z: Length control of He atmospheric plasma jet plumes: effects of discharge parameters and ambient air. Phys Plasmas 2009, 16: 043505. 10.1063/1.3119212 Xiong R, Xiong Q, Nikiforov AY, Vanraes P, Leys C: Influence of helium mole fraction distribution on the properties of cold atmospheric pressure helium plasma jets. J Appl Phys 2012, 112: 033305. 10.1063/1.4746700 Nie QY, Ren CS, Wang DZ, Zhang JL: A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure. Appl Phys Lett 2008, 93: 011503. 10.1063/1.2956411 Li X, Jia P, Yuan N, Fang T, Wang L: One atmospheric pressure plasma jet with two modes at a frequency of several tens kHz. Phys Plasmas 2011, 18: 043505. 10.1063/1.3586499 Kim DB, Rhee JK, Gweon B, Moon SY, Choe W: Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration. Appl Phys Lett 2007, 91: 151502. 10.1063/1.2794774 Jiang N, Ji A, Cao Z: Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup. J Appl Phys 2010, 108: 033302. 10.1063/1.3466993