Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bronikowski AM, Bennett AF, Lenski RE. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments. Evol. 2001;55:33–40.
Ke X, Lu Y. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol Ecol. 2012;80:87–97.
Benoit MR, Li W, Stodieck LS, Lam KS, Winther CL, Roane TM, et al. Microbial antibiotic production aboard the international Space Station. Appl Microbiol Biotechnol. 2006;70:403–11.
Baker PW, Meyer ML, Leff LG. Escherichia coli growth under modeled reduced gravity. Microgravity Sci Tec. 2004;15:39–44.
Kacena MA, Merrell GA, Manfredi B, Smith EE, Klaus DM, Todd P. Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol. 1999;51:229–34.
Kim W, Tengra FK, Shong J, Marchand N, Chan HK, Young Z, et al. Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiol. 2013;13:241–50.
Lawal A, Kirtley ML, van Lier CJ, Erova TE, Kozlova EV, Sha J, et al. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain. Astrobiology. 2013;13:821–32.
Crabbe A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol. 2011;77:1221–30.
Wilson JW, Ott CM, Bentrup KHZ, Ramamurthy R, Quick L, Porwollik S, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A. 2007;104:16299–304.
Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, et al. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A. 2002;99:13807–12.
Van Mulders SE, Stassen C, Daenen L, Devreese B, Siewers V, van Eijsden RG, et al. The influence of microgravity on invasive growth in Saccharomyces cerevisiae. Astrobiology. 2011;11:45–55.
Vukanti R, Model MA, Leff LG. Effect of modeled reduced gravity conditions on bacterial morphology and physiology. BMC Microbiol. 2012;12:4–14.
Crabbe A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, et al. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol. 2010;12:1545–64.
Lawal A, Jejelowo OA, Rosenzweig JA. The effects of low-shear mechanical stress on Yersinia pestis virulence. Astrobiology. 2010;10:881–8.
Lynch SV, Brodie EL, Matin A. Role and regulation of sigma(s) in general resistance conferred by low-shear simulated microgravity in Escherichia coli. J Bacteriol. 2004;186:8207–12.
Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, et al. Low-shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol. 2002;68:5408–16.
Crabbe A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PAO1. Environ Microbiol. 2008;10:2098–110.
Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol. 2006;72:7701–10.
De Gelder J, Vandenabeele P, De Boever P, Mergeay M, Moens L, De Vos P. Raman spectroscopic analysis of Cupriavidus metallidurans LMG 1195 (CH34) cultured in low-shear microgravity conditions. Microgravity Sci Tec. 2009;21:217–23.
Lam KS, Mamber SW, Pack EJ, Forenza S, Fernandes PB, Klaus DM. The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid-state fermentation. Appl Microbiol Biotechnol. 1998;49:579–83.
Tirumalai MR, Karouia F, Tran Q, Stepanov VG, Bruce RJ, Ott CM, et al. The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. NPJ Microgravity. 2017;3:15.
Crabbe A, Nielsen-Preiss SM, Woolley CM, Barrila J, Buchanan K, McCracken J, et al. Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One. 2013;8:e80677.
Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen YU, Sodipe A, et al. Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol. 2010;85:885–91.
Lam K, Gustavson DR, Pirnik DL, Pack E, Bulanhagui C, Mamber SW, et al. The effect of space flight on the production of actinomycin D by Streptomyces plicatus. J Ind Microbiol Biotechnol. 2002;29:299–302.
Rosado H, Doyle M, Hinds J, Taylor PW. Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut. 2010;66:408–13.
Leys NMEJ, Hendrickx L, De Boever P, Baatout S, Mergeay M. Space flight effects on bacterial physiology. J Biol Regul Homeost Agents. 2004;18:193–9.
Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev. 2004;68:345–61.
Benoit MR, Klaus DM. Microgravity, bacteria, and the influence of motility. Adv Space Res. 2007;39:1225–32.
Gao H, Liu ZH, Zhang LX. Secondary metabolism in simulated microgravity and space flight. Protein Cell. 2011;2:858–61.
Jules K, McPherson K, Hrovat K, Kelly E, Reckart T. A status report on the characterization of the microgravity environment of the international Space Station. Acta Astronaut. 2004;55:335–64.
Tryggvason BV, Duval WMB, Smith RW, Rezkallah KS, Varma S, Redden RF, et al. The vibration environment on the international Space Station: its significance to fluid-based experiments. Acta Astronaut. 2001;48:59–70.
Thomas VA, Prasad NS, Reddy CAM. Microgravity research platforms - a study. Curr Sci. 2000;79:336–40.
Prasad G, Jayaram S, Ward J, Gupta P. SimBOX: a scalable architecture for aggregate, distributed command & control of spaceport and service constellation. Proc SPIE. 2004;5423:437–46.
Preu P, Braun M. German SIMBOX on Chinese mission Shenzhou-8: Europe's first bilateral cooperation utilizing China's Shenzhou programme. Acta Astronaut. 2014;94:584–91.
Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, De Geest M, et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology. 2013;13:1–17.
Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner zu Bentrup K, et al. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods. 2003;54:1–11.
van Loon JJWA. Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res. 2007;39:1161–5.
Briegleb W. Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull. 1992;5:23–30.
Hader DP, Rosum A, Schafer J, Hemmersbach R. Gravitaxis in the flagellate Euglena gracilis is controlled by an active gravireceptor. J Plant Physiol. 1995;146:474–80.
Klaus DM. Clinostats and bioreactors. Gravit Space Biol Bull. 2001;14:55–64.
Brungs S, Hauslage J, Hilbig R, Hemmersbach R, Anken RH. Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv Space Res. 2011;48:792–8.
Eiermann P, Kopp S, Hauslage J, Hemmersbach R, Gerzer R, Ivanova K. Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci Tec. 2013;25:153–9.
Hemmersbach R, Strauch SM, Seibt D, Schuber M. Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity. Microgravity Sci Tec. 2006;18:257–9.
Borst AG, van Loon JJWA. Technology and developments for the random positioning machine. RPM Microgravity Sci Tec. 2009;21:287–92.
Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta. 1997;203:S187–97.
Hammond TG, Hammond JM. Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol. 2001;281:F12–25.
Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods. 1992;14:51–7.
Guevorkian K, Valles JM. Swimming paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Proc Natl Acad Sci U S A. 2006;103:13051–6.
Kuznetsov OA, Hasenstein KH. Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta. 1996;198:87–94.
Liu YM, Zhu DM, Strayer DM, Israelsson UE. Magnetic levitation of large water droplets and mice. Adv Space Res. 2010;45:208–13.
Simon MD, Geim AK. Diamagnetic levitation: flying frogs and floating magnets (invited). J Appl Phys. 2000;87:6200–4.
Coleman CB, Gonzalez-Villalobos RA, Allen PL, Johanson K, Guevorkian K, Valles JM, et al. Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol Bioeng. 2007;98:854–63.
Dijkstra CE, Larkin OJ, Anthony P, Davey MR, Eaves L, Rees CE, et al. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J R Soc Interface. 2011;8:334–44.
Liu M, Gao H, Shang P, Zhou X, Ashforth E, Zhuo Y, et al. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation. PLoS One. 2011;6:e24697.
Beuls E, Van Houdt R, Leys N, Dijkstra C, Larkin O, Mahillon J. Bacillus thuringiensis conjugation in simulated microgravity. Astrobiology. 2009;9:797–805.
Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One. 2013;8:e57860.
Tucker DL, Ott CM, Huff S, Fofanov Y, Pierson DL, Willson RC, et al. Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment. BMC Microbiol. 2007;7:15.
Kacena MA, Manfredi B, Todd P. Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravity Sci Tec. 1999;12:74–7.
Benoit M, Klaus D. Can genetically modified Escherichia coli with neutral buoyancy induced by gas vesicles be used as an alternative method to clinorotation for microgravity studies? Microbiology. 2005;151(Pt 1):69–74.
Brown RB, Klaus D, Todd P. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of Escherichia coli. Microgravity Sci Tec. 2002;13:24–9.
Fang A, Pierson DL, Koenig DW, Mishra SK, Demain AL. Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol. 1997;63:4090–2.
Gasset G, Tixador R, Eche B, Lapchine L, Moatti N, Toorop P, et al. Growth and division of Escherichia coli under microgravity conditions. Res Microbiol. 1994;145:111–20.
Kacena MA, Todd P. Growth characteristics of Escherichia coli and Bacillus subtilis cultured on an agar substrate in microgravity. Microgravity Sci Tec. 1997;10:58–62.
Kacena MA, Leonard PE, Todd P, Luttges MW. Low gravity and inertial effects on the growth of Escherichia coli and Bacillus subtilis in semi-solid media. Aviat Space Environ Med. 1997;68:1104–8.
Klaus DM, Simske S, Todd P, Stodieck L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiol. 1997;143(Pt 1):449–55.
Klaus DM, Todd P, Schatz A. Functional weightlessness during clinorotation of cell suspensions. Adv Space Res. 1998;21:1315–8.
Thevenet D, D'Ari R, Bouloc P. The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J Biotechnol. 1996;47:89–97.
Mattoni RHT. Space-flight effects and gamma radiation interaction on growth and induction of lysogenic bacteria - a preliminary report. Biosci. 1968;18:602–8.
England LS, Gorzelak M, Trevors JT. Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim Biophys Acta. 2003;1624:76–80.
Guadarrama S, Pulcini E, Broadaway SC, Pyle BH. Pseudomonas aeruginosa growth and production of exotoxin a in static and modeled microgravity environments. Gravit Space Biol Bull. 2005;18:85–6.
Allen CA, Galindo CL, Pandya U, Watson DA, Chopra AK, Niesel DW. Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation. Acta Astronaut. 2007;60:433–44.
Fang A, Pierson DL, Mishra SK, Demain AL. Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol. 2000;54:33–6.
Fang A, Pierson DL, Mishra SK, Koenig DW, Demain AL. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus. J Ind Microbiol Biotechnol. 1997;18:22–5.
Baker PW, Leff LG. The effect of simulated microgravity on bacteria from the Mir spice station. Microgravity Sci Tec. 2004;15:35–41.
Baker PW, Leff LG. Intraspecific differences in bacterial responses to modelled reduced gravity. J Appl Microbiol. 2005;98:1239–46.
Baker PW, Leff LG. Attachment to stainless steel by Mir Space Station bacteria growing under modeled reduced gravity at varying nutrient concentrations. Biofilms. 2005;2:1–7.
Purevdorj-Gage B, Sheehan KB, Hyman LE. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol. 2006;72:4569–75.
Dornmayr-Pfaffenhuemer M, Legat A, Schwimbersky K, Fendrihan S, Stan-Lotter H. Responses of haloarchaea to simulated microgravity. Astrobiology. 2011;11:199–205.
Karouia F, Tirumalai MR, Nelman-Gonzalez MA, Sams CF, Ott MC, Willson RC, et al. Long-term exposure of bacterial cells to simulated microgravity. Proc SPIE. 2012;8521:85210K–6.
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: high-throughput instruments for in situ biological research beyond earth. Biotechnol Adv. 2017;35:905–32.
Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, et al. Microbiomes of the dust particles collected from the international Space Station and spacecraft assembly facilities. Microbiome. 2015;3:50.
Schwendner P, Mahnert A, Koskinen K, Moissl-Eichinger C, Barczyk S, Wirth R, et al. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars 500 habitat during simulated Mars flight and landing. Microbiome. 2017;5:129.
Zea L, Larsen M, Estante F, Qvortrup K, Moeller R, Dias de Oliveira S, et al. Phenotypic changes exhibited by E. coli cultured in space. Front Microbiol. 2017;8:1598. eCollection 2017
Venkateswaran K, Checinska Sielaff A, Ratnayake S, Pope RK, Blank TE, Stepanov VG, et al. Draft genome sequences from a novel clade of Bacillus cereus sensu lato strains, isolated from the international Space Station. Genome Announc. 2017;5:e00680–17.
Venkateswaran K, Singh NK, Checinska Sielaff A, Pope RK, Bergman NH, van Tongeren SP, et al. Non-toxin-producing Bacillus cereus strains belonging to the B. Anthracis clade isolated from the international space station. mSystems. 2017;2:e00021–17.
Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, et al. Resilient microorganisms in dust samples of the international Space Station-survival of the adaptation specialists. Microbiome. 2016;4:65.
Knox BP, Blachowicz A, Palmer JM, Romsdahl J, Huttenlocher A, Wang CC, et al. Characterization of Aspergillus fumigatus isolates from air and surfaces of the international Space Station. mSphere. 2016;1:e00227–16.
Mora M, Mahnert A, Koskinen K, Pausan MR, Oberauner-Wappis L, Krause R, et al. Microorganisms in confined habitats: microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the international space station. Front Microbiol. 2016;7:1573.
Moissl-Eichinger C, Cockell C, Rettberg P. Venturing into new realms? Microorganisms in space. FEMS Microbiol Rev. 2016;40:722–37.
Fang A, Pierson DL, Mishra SK, Koenig DW, Demain AL. Gramicidin S production by Bacillus brevis in simulated microgravity. Curr Microbiol. 1997;34:199–204.
Huang B, Liu N, Rong XY, Ruan JS, Huang Y. Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol. 2015;99:4409–22.
Gao Q, Fang A, Pierson DL, Mishra SK, Demain AL. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl Microbiol Biotechnol. 2001;56:384–7.
Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ. Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol. 2003;47:699–714.
Luo A, Gao C, Song Y, Tan H, Liu Z. Biological responses of a Streptomyces strain producing- nikkomycin to space flight. Space Med Med Eng. 1998;11:411–4.
Xiao Y, Liu YD, Wang GH, Hao ZJ, An YJ. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon. 2010;56:1–7.
Todd P, Klaus DM. Theories and models on the biology of cells in-space. Adv Space Res. 1995;17:3–10.
Clarke AH, Just K, Krzok W, Schönfeld U. Listing's plane and the 3D-VOR in microgravity - the role of the otolith afferences. J Vestib Res. 2013;23:61–70.