Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization

Molecular Biology of the Cell - Tập 26 Số 1 - Trang 66-77 - 2015
Olga I. Kahn1, Vandana Sharma1, Christian González‐Billault2, Peter W. Baas1
1Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
2Department of Biology and Institute for Cell Dynamics and Biotechnology (ICDB), Faculty of Sciences, Universidad de Chile, 7800024 Nunoa, Santiago, Chile

Tóm tắt

Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic spindle, where it limits the rate at which faster motors can move microtubules. In neurons, experimental suppression of kinesin-5 causes the axon to grow faster by increasing the mobility of microtubules in the axonal shaft and the invasion of microtubules into the growth cone. Does kinesin-5 act differently in dendrites, given that they have a population of minus end–distal microtubules not present in axons? Using rodent primary neurons in culture, we found that inhibition of kinesin-5 during various windows of time produces changes in dendritic morphology and microtubule organization. Specifically, dendrites became shorter and thinner and contained a greater proportion of minus end–distal microtubules, suggesting that kinesin-5 acting normally restrains the number of minus end–distal microtubules that are transported into dendrites. Additional data indicate that, in neurons, CDK5 is the kinase responsible for phosphorylating kinesin-5 at Thr-926, which is important for kinesin-5 to associate with microtubules. We also found that kinesin-5 associates preferentially with microtubules rich in tyrosinated tubulin. This is consistent with an observed accumulation of kinesin-5 on dendritic microtubules, as they are known to be less detyrosinated than axonal microtubules.

Từ khóa


Tài liệu tham khảo

Ahmad FJ, 1998, J Cell Biol, 140, 391, 10.1083/jcb.140.2.391

Ahmad FJ, 1993, J Neurosci, 13, 856, 10.1523/JNEUROSCI.13-02-00856.1993

Ari C, 2014, Neurobiol Aging, 35, 1839, 10.1016/j.neurobiolaging.2014.02.006

Baas PW, 1990, J Cell Biol, 111, 495, 10.1083/jcb.111.2.495

Baas PW, 2012, Cytoskeleton (Hoboken), 69, 407, 10.1002/cm.21038

Baas PW, 2011, Dev Neurobiol, 71, 403, 10.1002/dneu.20818

Baas PW, 1991, J Neurosci Res, 30, 134, 10.1002/jnr.490300115

Badding MA, 2013, Gene Ther, 20, 616, 10.1038/gt.2012.77

Binder LI, 1985, J Cell Biol, 101, 1371, 10.1083/jcb.101.4.1371

Blangy A, 1995, Cell, 83, 1159, 10.1016/0092-8674(95)90142-6

Brown A, 1993, J Cell Sci, 104, 339, 10.1242/jcs.104.2.339

Buster DW, 2003, J Neurocytol, 32, 79, 10.1023/A:1027332432740

Cahu J, 2008, PLoS One, 3, e3936, 10.1371/journal.pone.0003936

Conde C, 2009, Nat Rev Neurosci, 10, 319, 10.1038/nrn2631

Dunn S, 2008, J Cell Sci, 121, 1085, 10.1242/jcs.026492

Erck C, 2005, Proc Natl Acad Sci USA, 102, 7853, 10.1073/pnas.0409626102

10.1091/mbc.e10-11-0905

Ferenz NP, 2010, Semin Cell Dev Biol, 21, 255, 10.1016/j.semcdb.2010.01.019

Ferhat L, 1998, J Neurosci, 18, 7822, 10.1523/JNEUROSCI.18-19-07822.1998

Gumy LF, 2013, J Neurosci, 33, 11329, 10.1523/JNEUROSCI.5221-12.2013

Gundersen GG, 1987, J Cell Biol, 105, 251, 10.1083/jcb.105.1.251

Guo X, 1999, J Neurosci, 19, 2113, 10.1523/JNEUROSCI.19-06-02113.1999

10.1091/mbc.e09-01-0044

Haque SA, 2004, Cell Motil Cytoskeleton, 58, 10, 10.1002/cm.10176

He Y, 2005, J Cell Biol, 168, 697, 10.1083/jcb.200407191

Kapitein LC, 2005, Nature, 435, 114, 10.1038/nature03503

Kapoor TM, 2000, J Cell Biol, 150, 975, 10.1083/jcb.150.5.975

Kashina AS, 1996, Nature, 379, 270, 10.1038/379270a0

Kollins KM, 2009, Neural Dev, 4, 26, 10.1186/1749-8104-4-26

Konishi Y, 2009, Nat Neurosci, 12, 559, 10.1038/nn.2314

Kosik KS, 1987, J Neurosci, 7, 3142, 10.1523/JNEUROSCI.07-10-03142.1987

10.1091/mbc.10.4.1105

Lein PJ, 2002, J Neurosci, 22, 10377, 10.1523/JNEUROSCI.22-23-10377.2002

Lein P, 1996, Int J Dev Neurosci, 14, 203, 10.1016/0736-5748(96)00008-1

Lein PJ, 1989, Dev Biol, 136, 330, 10.1016/0012-1606(89)90260-1

Lein P, 1995, Neuron, 15, 597, 10.1016/0896-6273(95)90148-5

Lin S, 2012, J Neurosci, 32, 14033, 10.1523/JNEUROSCI.3070-12.2012

Lin S, 2011, Traffic, 12, 269, 10.1111/j.1600-0854.2010.01152.x

Liu M, 2010, J Neurosci, 30, 14896, 10.1523/JNEUROSCI.3739-10.2010

Maruta H, 1986, J Cell Biol, 103, 571, 10.1083/jcb.103.2.571

Mayer TU, 1999, Science, 286, 971, 10.1126/science.286.5441.971

McAllister AK, 2000, Cereb Cortex, 10, 963, 10.1093/cercor/10.10.963

Myers KA, 2007, J Cell Biol, 178, 1081, 10.1083/jcb.200702074

Nadar VC, 2008, Curr Biol, 18, 1972, 10.1016/j.cub.2008.11.021

Nadar VC, 2012, J Neurosci, 32, 5783, 10.1523/JNEUROSCI.0144-12.2012

Nunez J, 1997, J Mol Neurosci, 8, 207, 10.1007/BF02736834

Palazzo A, 2003, Nature, 421, 230, 10.1038/421230a

Papasozomenos SC, 1987, Cell Motil Cytoskeleton, 8, 210, 10.1002/cm.970080303

Peris L, 2009, J Cell Biol, 185, 1159, 10.1083/jcb.200902142

Saunders AM, 2007, Curr Biol, 17, R453, 10.1016/j.cub.2007.05.001

Sawin KE, 1995, Proc Natl Acad Sci USA, 92, 4289, 10.1073/pnas.92.10.4289

Sharp DJ, 2000, Nature, 407, 41, 10.1038/35024000

Sharp DJ, 1997, J Cell Biol, 138, 833, 10.1083/jcb.138.4.833

Sirajuddin M, 2014, Nat Cell Biol, 16, 335, 10.1038/ncb2920

Stepanova T, 2003, J Neurosci, 23, 2655, 10.1523/JNEUROSCI.23-07-02655.2003

Tronel S, 2012, Hippocampus, 22, 292, 10.1002/hipo.20895

Tronel S, 2010, Proc Natl Acad Sci USA, 107, 7963, 10.1073/pnas.0914613107

van den Wildenberg SM, 2008, Curr Biol, 18, 1860, 10.1016/j.cub.2008.10.026

Waitzman JS, 2014, Biol Cell, 106, 1, 10.1111/boc.201300054

Wu GY, 1999, J Neurosci, 19, 4472, 10.1523/JNEUROSCI.19-11-04472.1999

Yoon SY, 2005, Cell Motil Cytoskeleton, 60, 181, 10.1002/cm.20057

Zheng Y, 2008, Nat Cell Biol, 10, 1172, 10.1038/ncb1777