Effects of indomethacin on ovarian leukocytes during the periovulatory period in the rat
Tóm tắt
Từ khóa
Tài liệu tham khảo
Espey LL: Ovulation as an inflammatory reaction – a hypothesis. Biol Reprod. 1980, 22: 73-106.
Espey LL: Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod. 1994, 50: 233-238.
Adashi EY: The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cell series. Endocr Rev. 1990, 11: 454-464.
Brännström M, Mayrhofer G, Robertson SA: Localization of leukocyte subsets in the rat ovary during the periovulatory period. Biol Reprod. 1993, 48: 277-286.
Bukovsky A, Chen TT, Wimalasena J, Caudle MR: Cellular localization of luteinizing hormone receptor immunoreactivity in the ovaries of immature, gonadotropin-primed and normal cycling rats. Biol Reprod. 1993, 48: 1367-1382.
Norman RJ, Brännström M: White cells and the ovary – incidental invaders or essential effectors?. J Endocrinol. 1994, 140: 333-336.
Bukovsky A, Caudle MR, Keenan JA, Wimalasena J, Upadhyaya NB, van Meter SE: Is corpus luteum regression an immune-mediated event? Localization of immune system components and luteinizing hormone receptor in human corpora lutea. Biol Reprod. 1995, 53: 1373-1384.
Gaytán F, Morales C, Bellido C, Aguilar E, Sánchez-Criado JE: Role of prolactin in the regulation of macrophages and in the proliferative activity of vascular cells in newly formed and regressing rat corpora lutea. Biol Reprod. 1997, 57: 478-486.
Cavender JL, Murdoch WJ: Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol Reprod. 1988, 39: 989-997.
Murdoch WJ, McCormick RJ: Mechanisms and physiological implications of leukocyte chemoattraction into periovulatory ovine follicles. J Reprod Fertil. 1993, 97: 375-380.
Krishna A, Beesley K, Terranova PF: Histamine, mast cells and ovarian function. J Endocrinol. 1989, 120: 363-371.
Gaytán F, Aceitero J, Bellido C, Sánchez-Criado JE, Aguilar E: Estrous cycle-related changes in mast cell numbers in several ovarian compartments in the rat. Biol Reprod. 1991, 45: 27-33.
Araki M, Fukumatsu Y, Katabuchi H, Shultz LD, Takahashi K, Okamura H: Follicular development and ovulation in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation. Biol Reprod. 1996, 54: 478-484.
Cohen PE, Zhu L, Pollard JW: Absence of colony stimulating factor-1 in osteopetrotic (csfm op/csfmop) mice disrupts estrous cycles and ovulation. Biol Reprod. 1997, 56: 110-118.
Watanabe H, Tatsumi K, Yokoi H, Higuchi T, Iwai M, Fukuoka M, Fujiwara H, Fujita K, Nakayama H, Mori T, Fujita J: Ovulation defect and its restoration by bone marrow transplantation in osteopetrotic mice of miftmi/miftmigenotype. Biol Reprod. 1997, 56: 110-118.
Hellbergh P, Thomsen P, Janson PO, Brännström M: Leukocyte supplementation increases the luteinizing hormone-induced ovulation rate in the in vitro-perfused rat ovary. Biol Reprod. 1991, 44: 791-797.
Brännström M, Bonello N, Norman RJ, Robertson SA: Reduction of ovulation rate in the rat by administration of a neutrophil depleting monoclonal antibody. J Reprod Immunol. 1995, 29: 265-270. 10.1016/0165-0378(95)00941-D.
Ujioka T, Matsukawa A, Tanaka N, Matsuura K, Yoshinaga M, Okamura H: Interleukin-8 as an essential factor in human chorionic gonadotropin-induced rabbit ovulatory process: interleukin-8 induces neutrophil accumulation and activation in ovulation. Biol Reprod. 1998, 58: 526-530.
Murdoch WJ, McDonnel AC: Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction. 2002, 123: 743-750.
Chun SY, Daphna-Iken D, Calman D, Tsafriri A: Severe leukocyte depletion does not affect follicular rupture in the rat. Biol Reprod. 1993, 48: 905-909.
Tsafriri A, Chun SY, Reich R: Follicular rupture and ovulation. In: The Ovary. Edited by: Adashi EY, Leung PCK. 1993, New York, Raven Press, 228-243.
Espey LL, Lipner H: Ovulation. In: Physiology of Reproduction. Edited by: Knobil E, Neill JD. 1994, New York, Raven Press, 725-780.
Gaytán F, Tarradas E, Morales C, Bellido C, Sánchez-Criado JE: Morphological evidence for uncontrolled proteolytic activity during the ovulatory process in indomethacin-treated rats. Reproduction. 2002, 123: 639-649.
Gaytán F, Tarradas E, Bellido C, Morales C, Sánchez-Criado JE: Prostaglandin E1 inhibits abnormal follicle rupture and restores ovulation in indomethacin-treated rats. Biol Reprod. 2002, 67: 1140-1147.
Murdoch WJ, Lund SA: Prostaglandin-independent anovulatory mechanism of indomethacin action: inhibition of tumor necrosis factor α-induced sheep ovarian cell apoptosis. Biol Reprod. 1999, 61: 1655-1659.
Murdoch WJ, McCormick RJ: Mechanisms and physiological implications of leukocyte chemoattraction into periovulatory ovine follicles. J Reprod Fertil. 1993, 97: 375-380.
Gaytán F, Bellido C, Morales C, Aguilar E, Sánchez-Criado JE: Follicular growth pattern in cycling rats from late proestrus to early estrus. J Reprod Fertil. 1997, 110: 153-159.
Petrovska M, Dimitrov DG, Michael SD: Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system. Am J Reprod Immunol. 1996, 36: 175-183.
Standaert FE, Zamora CS, Chew BP: Quantitative and qualitative changes in blood leukocytes in the porcine ovary. Am J Reprod Immunol. 1991, 25: 163-168.
Wong KHH, Negishi H, Adashi EY: Expression, hormonal regulation, and cyclic variation of chemokines in the rat ovary: key determinants of the intraovarian residence of representatives of the white blood cell series. Endocrinology. 2002, 143: 784-791.
Bergh A, Rooth P, Widmark A, Damber JE: Treatment of rats with hCG induces inflammation-like changes in the testicular microcirculation. J Reprod Fertil. 1987, 79: 135-143.
Bergh A, Damber JE, van Rooijen N: The human chorionic gonadotrophin-induced inflammation-like response is enhanced in macrophage-depleted rat testes. J Endocrinol. 1993, 136: 415-420.
Burch RM, Wise WC, Haluska PV: Prostaglandin-independent inhibition of calcium transport by nonsteroidal anti-inflammatory drugs: differential effects of carboxylic acids and piroxicam. J Pharmacol Exp Ther. 1983, 227: 84-91.