Effects of functional monomers on retention behavior of small and large molecules in monolithic capillary columns at isocratic and gradient conditions

Journal of Separation Science - Tập 34 Số 16-17 - Trang 2054-2062 - 2011
Jiřı́ Urban1, Pavel Jandera1, Pavel Langmaier1
1Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic

Tóm tắt

AbstractThe polarity of (poly)methacrylate monolithic capillary columns was varied by using alkylmethacrylate monomers with butyl, cyclohexyl, 2‐ethylhexyl, lauryl, and stearyl functional groups in the polymerization mixture. The hydrodynamic properties, as well as the retention characteristics in RP‐LC of small molecules (alkylbenzenes) and of proteins under gradient elution conditions were studied. The RP selectivity depends on the type of alkyl chain in methacrylate monomer; however, there was no direct correlation between the size of the monomer molecule and methylene or aromatic selectivity of the monlithic column. The lowest selectivity was found for column based on lauryl methacrylate monomer. On the other hand, butyl methacrylate column shows high phenyl selectivity and the column with stearyl methacrylate possesses the highest methylene selectivity for small molecules. The retention increases with longer alkyl chain in methacrylate monomer, especially for high molar mass proteins on all prepared columns and showed gradient elution behavior of proteins in agreement with the linear solvent strength gradient model. The poly(laurylmethacrylate) column showed lowest hydrophobicity but best efficiency for proteins of all columns tested.

Từ khóa


Tài liệu tham khảo

10.1002/jssc.200800182

10.1016/j.chroma.2007.07.014

10.4155/bio.09.17

10.1002/jssc.200800641

10.1002/elps.201000490

10.2174/157341210791936777

10.1016/j.polymer.2007.02.045

10.1007/s00216-006-0425-2

10.1016/j.chroma.2004.11.040

10.1016/j.jbbm.2006.08.009

10.1365/s10337-004-0295-8

10.1016/j.chroma.2005.08.041

10.1002/jssc.200700185

10.1002/jssc.200500239

10.1016/j.chroma.2011.01.042

10.1016/S0021-9673(01)94709-0

10.1016/S0021-9673(98)01070-X

10.1016/j.chroma.2010.07.050

10.1002/elps.200800485

10.1016/j.chroma.2009.01.089

10.1016/j.chroma.2004.04.047

Snyder L. R., 2007, High‐performance Gradient Elution, The Practical Application of the Linear‐Solvent Strength Model

10.1016/j.chroma.2008.01.006

10.1016/S0021-9673(01)86422-0

10.1016/S0021-9673(01)97902-6

10.1002/9781118592014

10.1016/S0021-9673(00)85726-X

10.1016/S0021-9673(00)87035-1

10.1016/S0021-9673(01)97720-9

10.1016/S0021-9673(00)94401-7

Snyder L. R., 1998, Adv. Chromatogr., 38, 115

Jandera P., 1985, Gradient Elution in Liquid Chromatography

Jandera P., Adv. Chromatogr., 2005, 1

10.1016/S0021-9673(01)96400-3

10.1016/S0021-9673(01)81636-8

10.1016/j.chroma.2007.08.027

10.1016/j.seppur.2006.05.024

10.1002/bit.260220504