Effects of four drying methods on the quality, antioxidant activity and anthocyanin components of blueberry pomace
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdel-Aal, E., & Hucl, P. (2003). Composition and stability of anthocyanins in blue-grained wheat. Journal Agriculture and Food Chemistry, 51(8), 2174–2180. https://doi.org/10.1021/jf021043x
Amoussa, A., Zhang, L., Lagnika, C., Riaz, A., Zhang, L., Liu, X., & Beta, T. (2021). Effects of preheating and drying methods on pyridoxine, phenolic compounds, ginkgolic acids, and antioxidant capacity of Ginkgo biloba nuts. Journal of Food Science., 86(9), 4197–4208. https://doi.org/10.1111/1750-3841.15864
Bornsek, S. M., Ziberna, L., Polak, T., Vanzo, A., Ulrih, N. P., Abram, V., Tramer, F., & Passamonti, S. (2012). Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chemistry, 134(4), 1878–1884. https://doi.org/10.1016/j.foodchem.2012.03.092
Bueno, J., Sáez-plaza, P., Ramos-escudero, F., Jiménez, A., Fett, R., & Asuero, A. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42(2), 126–151. https://doi.org/10.1080/10408347.2011.632314
Byung-Taek., Oh., Seong-Yeop., Jeong., Palanivel., Velmurugan., Jung-Hee., Park., Do-Youn., 2017Byung-Taek., Oh., Seong-Yeop., Jeong., Palanivel., Velmurugan., Jung-Hee., Park., & Do-Youn. (2017). Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. Journal of Bioscience and Bioengineering. 124 (5),542-550. https://doi.org/10.1016/j.jbiosc.2017.05.011
Chai, Z., Herrera-Balandrano, D. D., Yu, H., Beta, T., Zeng, Q. L., Zhang, X. X., Tian, L. L., Niu, L. Y., & Huang, W. Y. (2021). A comparative analysis on the anthocyanin composition of 74 blueberry cultivars from China. Journal of Food Composition and Analysis, 102, 104051. https://doi.org/10.1016/j.jfca.2021.104051
Cutler, B. R., Petersen, C., & Babu, P A. (2017). Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies. Molecular Nutrition Food Research. 61 (6). https://doi.org/10.1002/mnfr.201600271
Hou, L., Li, R., Wang, S., & Datta, A. K. (2021). Numerical analysis of heat and mass transfers during intermittent microwave drying of Chinese jujube (Zizyphus jujuba Miller). Food and Bioproducts Processing, 129(6), 10–23. https://doi.org/10.1016/j.fbp.2021.06.005
Hu, A. J., Hao, S. T., Zheng, J., Chen, L., & Sun, P. P. (2020). Multi-frequency ultrasonic extraction of anthocyanins from blueberry pomace and evaluation of its antioxidant activity. Journal of AOAC International, 104(3), 811–817. https://doi.org/10.1093/jaoacint/qsaa150
Hutabarat, R. P., Xiao, Y. D., Wu, H., Wang, J., Li, D. J., & Huang, W. Y. (2019). Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing. Journal of Food Quality, 2019, 6806790. https://doi.org/10.1155/2019/6806790
Johnson, M. H., Lucius, A., Meyer, T., & Elvira, G. (2011). Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum). Journal of Agricultural, 59(16), 8923–8930. https://doi.org/10.1021/jf201720z
Lachowicz, A., Michalska, K., Lech, J., Majerska, J., & Oszmiański, A. (2019). Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT- Food Science and Technology, 111, 727–736. https://doi.org/10.1016/j.lwt.2019.05.054
Liu, Z., Xie, L., Zielińska, M., Pan , Z., & Xiao, H. (2021). Pulsed vacuum drying enhances drying of blueberry by altering micro-, ultrastructure and water status and distribution. LWT- Food Science and Echnology, 142(8). https://doi.org/10.1016/j.lwt.2021.111013
Michalczyk, M., Macura, R., & Matuszak, I. (2009). The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. Journal of Food Processing., 33(1), 11–21. https://doi.org/10.1111/j.1745-4549.2008.00232.x
Mitra, P., & Meda, V. (2009). Optimization of microwave-vacuum drying parameters of Saskatoon berries using response surface methodology. Drying Technology, 27(10), 1089–1096. https://doi.org/10.1080/07373930903221101
Murtijaya, Y. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT - Food Science and Technology, 40(9), 1664–1669. https://doi.org/10.1016/j.lwt.2006.12.013
Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin. Journal Agriculture and Food Chemistry, 50(1), 166–171. https://doi.org/10.1021/jf0108765
Noormets, M., & Olson, A. R. (2006). Observations on the gynoecial pathway for pollen tube growth in sweet lowbush blueberry (Vaccinium angustifolium Ait.). Journal of Applied Botany and Food Quality, 80(1), 6–13. https://doi.org/10.1086/503298
Polat, S., Guclu, G., Kelebek, H., Keskin, M., & Selli, S. (2021). Comparative elucidation of colour, volatile and phenolic profiles of black carrot (Daucus carota L.) pomace and powders prepared by five different drying methods. Food Chemistry, 6, 130941. https://doi.org/10.1016/j.foodchem.2021.130941
Šarić, B., Mišan, A., Mandić, A., Nedeljković, N., & Đilas, S. (2016). Valorisation of raspberry and blueberry pomace through the formulation of value-added gluten-free cookies. Journal of Food Science and Technology, 53(2), 1140–1150. https://doi.org/10.1007/s13197-015-2128-1
Shao, X., Sun, H., Yuan, D., Ma, Z., Wang, L., & Dong, J. (2015). Optimization of vacuum freeze drying of anthocyanins from Acanthopanax sessiliflorus fruits. Advance Journal of Food Science and Technology, 7(10):746755. https://doi.org/10.19026/ajfst.7.1732
Sun, L., Ding, X., Qi, J., Yu, H., He, S., Zhang, J., Ge, H., & Yu, B. (2012). Antioxidant anthocyanins screening through spectrum-effect relationships and DPPH-HPLC-DAD analysis on nine cultivars of introduced rabbiteye blueberry in China. Food Chemistry, 132;(2):759–765. https://doi.org/10.1016/j.foodchem.2011.11.030
Tchabo, W., Ma, Y., Engmann, F. N., & Zhang, H. (2015). Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Industrial Crops and Products., 63, 214–225. https://doi.org/10.1016/j.indcrop.2014.09.053
Wall, M. M., & Gentry, T. S. (2007). Carbohydrate composition and color development during drying and roasting of macadamia nuts (Macadamia integrifolia). LWT - Food Science and Technology, 40(4), 587–593. https://doi.org/10.1016/j.lwt.2006.03.015
Wang, H., Zhang, M., & Adhikari, B. (2015). Drying of shiitake mushroom by combining freeze-drying and mid-infrared radiation. Food and Bioproducts Processing, 94, 507–517. https://doi.org/10.1016/j.fbp.2014.07.008
Xu, Y., Xiao, Y., Lagnika, C., Li, D., Liu, C., Jiang, N., Song, J., & Zhang, M. (2020). A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods. Food Chemistry, 309, 124935. https://doi.org/10.1016/j.foodchem.2019.06.002
Yemmireddy, V. K., Chinnan, M. S., Kerr, W. L., & Hung, Y. C. (2013). Effect of drying method on drying time and physico-chemical properties of dried rabbiteye blueberries. LWT - Food Science and Technology, 50(2), 739–745. https://doi.org/10.1016/j.lwt.2012.07.011
Zhang, L., Fan, G., Khan, M. A., Yan, Z., & Beta, T. (2020a). Ultrasonic-assisted enzymatic extraction and identification of anthocyanin components from mulberry wine residues. Food Chemistry, 323, 126714. https://doi.org/10.1016/j.foodchem.2020.126714
Zhang, L., Zhou, J., Liu, H., Khan, M., Huang, K., & Gu, Z. (2012). Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. European Food Research and Technology, 235(4), 637–645. https://doi.org/10.1007/s00217-012-1796-6
Zhang, W., Shen, Y., Li, Z., Xie, X., Gong, E., Tian, J., Si, X., Wang, Y., Gao, N., Shu, C., Meng, X., Li, B., & Liu, R. (2020). Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium spp.) puree. Food Chemistry., 342, 128564. https://doi.org/10.1016/j.foodchem.2020.128564