Effects of early life NICU stress on the developing gut microbiome

Developmental Psychobiology - Tập 61 Số 5 - Trang 650-660 - 2019
Amy L. D’Agata1,2, Jing Wu3, Manushi Welandawe3, Samia Valéria Ozorio Dutra2, Bradley Kane2, Maureen Groër2
1College of Nursing, University of Rhode Island, Kingston, Rhode Island
2College of Nursing, University of South Florida, Tampa, Florida
3Computer Science and Statistics, University of Rhode Island, Kingston, Rhode Island

Tóm tắt

AbstractSuccession of gut microbial community structure for newborns is highly influenced by early life factors. Many preterm infants cared for in the NICU are exposed to parent–infant separation, stress, and pain from medical care procedures. The purpose of the study was to investigate the impact of early life stress on the trajectory of gut microbial structure. Stool samples from very preterm infants were collected weekly for 6 weeks. NICU stress exposure data were collected daily for 6 weeks. V4 region of the 16S rRNA gene was amplified by PCR and sequenced. Zero‐inflated beta regression model with random effects was used to assess the impact of stress on gut microbiome trajectories. Week of sampling was significant for Escherichia, Staphylococcus, Enterococcus, Bifidobacterium, Proteus, Streptococcus, Clostridium butyricum, and Clostridium perfringens. Antibiotic usage was significant for Proteus, Citrobacter, and C. perfringens. Gender was significant for Proteus. Stress exposure occurring 1 and 2 weeks prior to sampling had a significant effect on Proteus and Veillonella. NICU stress exposure had a significant effect on Proteus and Veillonella. An overall dominance of Gammaproteobacteria was found. Findings suggest early life NICU stress may significantly influence the developing gut microbiome, which is important to NICU practice and future microbiome research.

Từ khóa


Tài liệu tham khảo

10.3390/ijms17050649

10.3748/wjg.v23.i25.4548

10.1042/cs0950115

10.1111/j.2517-6161.1995.tb02031.x

10.1186/s12887-016-0591-0

10.1542/peds.2013-0372

10.1186/2049-2618-1-30

10.1128/mBio.00441-18

10.1093/bioinformatics/btw308

10.1038/s41390-018-0022-z

10.1016/j.coi.2011.07.010

10.3171/2015.7.PEDS15140

10.1210/me.2014-1108

10.1038/mp.2012.77

10.1002/dev.21507

10.1097/ANC.0000000000000309

10.1093/ije/dyy064

10.1016/j.bbi.2018.08.010

10.1113/jphysiol.2014.273995

10.3389/fmicb.2017.02243

10.1073/pnas.1002601107

10.1038/nm.4039

10.1016/j.jpedsurg.2009.02.013

10.1016/j.ynstr.2017.03.001

10.1038/nature18850

10.1016/j.jogn.2016.04.009

10.1089/bfm.2015.0115

10.1186/2049-2618-2-38

10.1017/S0954579409000054

10.1073/pnas.1010529108

10.1186/s40168-018-0547-8

10.1016/j.tim.2004.01.001

10.1001/jamapediatrics.2015.1486

10.1016/j.bbr.2018.03.036

10.1177/2167702614555413

10.3389/fmicb.2018.02013

10.1542/peds.2013-2336

Kostic A. D., 2015, The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes, CellHost and Microbe, 17, 260

10.1073/pnas.1409497111

10.1186/2049-2618-1-2

10.1016/j.bbi.2016.12.019

10.1016/j.molmed.2015.03.005

10.1080/01621459.1988.10478722

10.1037/amp0000058

10.1371/journal.pone.0124504

10.1037/bul0000091

10.1002/epi4.12114

10.1371/journal.pone.0168677

10.1016/j.molmed.2014.12.002

10.1111/j.1365-2982.2010.01620.x

10.1016/j.earlhumdev.2009.05.002

10.1097/MPG.0000000000000913

10.1007/s00248-018-1176-2

10.1542/peds.2016-2690

10.1038/ismej.2016.83

10.1073/pnas.1600324113

10.1152/physrev.00036.2012

Sampson T. R., 2015, Control of brain development, function, and behavior by the microbiome, CellHost and Microbe, 17, 565

Sharon G., 2014, Specialized metabolites from the microbiome in health and disease, CellMetabolism, 20, 719

10.1016/j.schres.2018.01.002

10.1016/j.tibtech.2015.06.011

10.1542/peds.2011-2663

10.1371/journal.pcbi.1004338

10.1016/j.bbi.2015.07.009

10.1001/jama.2015.10244

10.1113/jphysiol.2004.063388

10.1007/s11920-015-0625-6

10.1515/revneuro-2017-0072

10.1074/mcp.RA117.000102