Effects of dissolved metal chlorides on the behavior of silica nanoparticles in aqueous media
Tóm tắt
Effects of chlorides of univalent (LiCl, NaCl, KCl), bivalent (MgCl2, BaCl2) and trivalent (AlCl3) metals at different concentration (0.001–0.1 M) on the behavior of nanosilica A-200 (0.5–5 wt.%) in aqueous media are analyzed using photon correlation spectroscopy (particle size distribution, PSD), electrophoresis (zeta potential ζ), potentiometric titration (surface charge density), and estimation of screening length of primary particles and their aggregates. The zeta potential and the PSD are affected by silica content, pH, and concentration and type of dissolved salts. Smaller but more strongly hydrated Li+ cations caused stronger nonlinear dependences of the zeta potential on pH and salt content than Na+ or K+. This nonlinearity is much stronger at a lower content of silica (0.5–1 wt.%) than at C
A-200 = 2.5 or 5 wt.%. At a high concentration of nanosilica (5 wt.%) the effect of K+ ions causes stronger diminution of the negative value of the zeta potential due to better adsorption of larger cations. Therefore, the influence of K+ on increasing screening length is stronger than that of Na+ for both primary nanoparticles and their aggregates. A similar difference in the ζ values is observed for different in size cations Ba2+ and Mg2+.
Tài liệu tham khảo
J. Lyklema, Fundamentals of interface and colloid science. Fundamentals (Academic Press, London, 1991) Vol. 1
J. Lyklema, Fundamentals of Interface and Colloid Science. Solid-liquid interfaces (Academic Press, London, 1995) Vol. 2
R.J. Hunter, Zeta Potential in Colloid Sciences (Academic Press, London, 1981)
R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 1989)
W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1992)
A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Pure Appl. Chem. 77, 1753 (2005)
V.M. Gun’ko, V.I. Zarko, R. Leboda, E. Chibowski, Adv. Colloid Interface Sci. 91, 1 (2001)
V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press, Boca Raton, 2013)
R.K. Iler, The Chemistry of Silica (Wiley, Chichester, 1979)
H. Ohshima, J. Colloid Interface Sci. 188, 481 (1997)
H. Ohshima, J. Colloid Interface Sci. 195, 137 (1997)
A.S. Dukhin, T.G.M. van der Ven, J. Colloid Interface Sci. 165, 9 (1994)
E. Matijevich (Ed.), Surface and Colloid Science (Wiley, New York, 1974) Vol. 7
S.S. Dukhin, Adv. Colloid Interface Sci. 44, 1 (1993)
J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H.P. Schuchmann, Chem. Eng. Res. Design 87, 474 (2009)
P. Ding, M.G. Orwa, A.W. Pacek, Powder Technology 195, 221 (2009)
I.N. Seekkuarachchi, K. Tanaka, H. Kumazawa, Chem. Eng. Sci. 63, 2341 (2008)
C. Batz-Sohn, Particle & Particle Systems Characterization 20, 370 (2003)
M. Kosmulski, Adv. Colloid Interface Sci. 171–172, 77 (2012)
M. Kosmulski, Adv. Colloid Interface Sci. 152, 14 (2009)
M. Kosmulski, J.B. Rosenholm, Adv. Colloid Interface Sci. 112, 93 (2004)
M. Kosmulski, Surface Charging and Points of Zero Charge (CRC Press, Boca Raton, FL, 2009)
M. Kosmulski, Colloids Surf. A: Physicochem. Eng. Aspects 222, 113 (2003)
M. Kosmulski, J. Colloid Interface Sci. 403, 43 (2013)
M. Kosmulski, J. Colloid Interface Sci. 298, 730 (2006)
M. Kosmulski, J. Colloid Interface Sci. 337, 439 (2009)
M. Kosmulski, E. Maczka, K. Marczewska-Boczkowska, J.B. Rosenholm, Marine Pollution Bull. 46, 120 (2003)
R. Singhon, J. Husson, M. Knorr, B. Lakard, M. Euvrard, Colloids Surf. B: Biointerfaces 93, 1 (2012)
R. Castellani, A. Poulesquen, F. Goettmann, P. Marchal, L. Choplin, Colloids Surf. A: Physicochem. Eng. Aspects 430, 39 (2013)
T. Jesionowski, Colloids Surf. A: Physicochem. Eng. Aspects 222, 87 (2003)
K. Schießl, F. Babick, M. Stintz, Advanced Powder Technology 23, 139 (2012)
U. Paik, J.Y. Kim, V.A. Hackley, Mater. Chem. Phys. 91, 205 (2005)
R. Mondragon, J.E. Julia, A. Barba, J.C. Jarque, Powder Technology 224, 138 (2012)
Y. Leong, Powder Technology 179, 38 (2007)
M. Schreier, T.E. Feltes, M.T. Schaal, J.R. Regalbuto, J. Colloid Interface Sci. 348, 571 (2010)
F.J. Rubio-Hernández, M.F. Ayúcar-Rubio, J.F. Velázquez-Navarro, F.J. Galindo-Rosales, J. Colloid Interface Sci. 298, 967 (2006)
Y.K. Leong, J. Colloid Interface Sci. 292, 557 (2005)
S. Allison, J. Colloid Interface Sci. 277, 248 (2004)
W.H. Kuan, S.L. Lo, M.K. Wang, J. Colloid Interface Sci. 272, 489 (2004)
W. Janusz, J. Patkowski, S. Chibowski, J. Colloid Interface Sci. 266, 259 (2003)
W. Janusz, M. Matysek, J. Colloid Interface Sci. 296, 22 (2006)
R. Charmas, W. Rudzinski, W. Piasecki, B. Prelot, F. Thomas, F. Villieras, W. Janusz, Appl. Surf. Sci. 196, 331 (2002)
S. Chibowski, W. Janusz, Appl. Surf. Sci. 196, 343 (2002)
M. Barczak, E. Skwarek, W. Janusz, A. Dąbrowski, S. Pikus, Appl. Surf. Sci. 256, 5370 (2010)
V.M. Gun’ko, A.V. Klyueva, Yu.N. Levchuk, R. Leboda, Adv. Colloid Interface Sci. 105, 201 (2003)
M.F. Chaplin, What is liquid water, Science in Society 58, 41 (2013)
W. Kunz (Ed.), Specific Ion Effects (World Scientific Publishing Co. Pte. Ltd., Singapore, 2009)
K.D. Collins, Methods 34, 300 (2004)
J.B. Robinson Jr., J.M. Strottmann, E. Stellwagen, Proc. Natl. Acad. Sci. USA 78, 2287 (1981)
A.T. Chan, J.A. Lewis, Langmuir 21, 8576 (2005)
V.M. Gun’ko, et al., Appl. Surf. Sci. 253, 3215 (2007)
V.M. Gun’ko, et al., Colloids Surf. A: Physicochem. Eng. Aspects 240, 9 (2004)
V.M. Gun’ko, et al., J. Colloid Interface Sci. 289, 427 (2005)
P.M. Dove, C.M. Craven, Geochimica et Cosmochimica Acta 69, 4963 (2005)
P. Leroy, N. Devau, A. Revil, M. Bizi, Journal of Colloid and Interface Science 410, 81 (2013)
A. Amiri, G. Øye, J. Sjöblom, Colloids and Surfaces A: Physicochem. Eng. Aspects 349, 43 (2009)
R. Mondragon, J.E. Julia, A. Barba, J.C. Jarque, Powder Technology 224, 138 (2012)
L. Peng, W. Qisui, L. Xi, Z. Chaocan, Powder Technology 193, 46 (2009)
A.T. Chan, J.A. Lewis, Langmuir 24, 11399 (2008)