Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Harper AE, Miller RH, Block KP: Branched-chain amino acid metabolism. Annu Rev Nutr 1984, 4: 409-454. 10.1146/annurev.nu.04.070184.002205
Garlick PJ: The role of leucine in the regulation of protein metabolism. J Nutr 2005,135(6 Suppl):1553S-6S.
Wilson J, Wilson G: Contemporary issues in protein requirements and consumption for resistance trained athletes. Journal of the International Society of Sports Nutrition 2006,3(1):7-27. 10.1186/1550-2783-3-1-7
Layman DK: The role of leucine in weight loss diets and glucose homeostasis. J Nutr 2003,133(1):261S-267S.
Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR: Bidirectional Modulation of Insulin Action by Amino Acids. J Clin Invest 1998,1;101(7):1519-29.
Mero A: Leucine supplementation and intensive training. Sports Med 1999,27(6):347-58. 10.2165/00007256-199927060-00001
Hider RC, Fern EB, London DR: Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats. Biochem J 1960,114(2):171-178.
Van Kovering M, Nissen SL: Oxidation of leucine and alpha-ketoisocaproate to b-hydroxy-b-methlbutyrate in vivo. Am J Physiol Endocrinol Metab 1992, 262: 27.
Chua BD, Siehl L, Morgan HE: Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J Biol Chem 1979, 254: 8358-8362.
Hong SOC, Layman DK: Effects of leucine on in vitro protein synthesis and degradation in rat skeletal muscles. J Nutr 1984, 114: 1204-1212.
Van Koevering MT, Gill DR, Smith RA, Owens FN, Nissen S, Ball RL: Effect of β-hydroxy-β-methyl butyrate on the health and performance of shipping-stressed calves. Oklahoma State Univ Res Rep 1993, 312-31.
Cersosimo E, Miller BM, Lacy WW, Abumrad NN: Alpha-ketoisocaproate, not leucine, is responsible for nitrogen sparing during progressive fasting in normal male volunteers. Surg Forum 1983, 34: 96-99.
Aussel C, Cynober L, Lioret N, Coudray-Lucas C, Vaubourdolle M, Saizy R, Giboudeau J: Plasma branched-chain keto acids in burn patients. Am J Clin Nutr 1986,44(6):825-831.
Hefler SK, Wideman L, Gaesser GA, Weltman A: Branched-chain amino acid (BCAA) supplementation improves endurance performance in competitive cyclists. Med Sci Sports Exerc 1995, 27: S149.
Vukovich MD, Sharp RL, Kesl LD, Schaulis DL, King DS: Effects of an amino acid supplement on adaptations to combined aerobic and anaerobic cycling training. Int J Sport Nutr 1997, 7: 298-309.
Mitch WE, Clark AS: Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 1984, 222: 579-86.
Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R: Effects of β-hydroxy-β-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol 2000, 89: 1340-1344.
Jowko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, Nissen S: Creatine and β-hydroxy-β-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutr 2001, 17: 558-566. 10.1016/S0899-9007(01)00540-8
Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe S: β-hydroxy-β-methylbutyrate ingestion, part I: Effects on strength and fat free mass. Med Sci Sports Exerc 2000, 32: 2109-2115. 10.1097/00005768-200012000-00022
O'Connor DM, Crowe MJ: Effects of beta-hydroxy-beta-methylbutyrate and creatine monohydrate supplementation on the aerobic and anaerobic capacity of highly trained athletes. J Sports Med Phys Fitness 2003, 43: 64-68.
Eliason BC, Kruger J, Mark D, Rasmann DN: Dietary supplement users: Demographics, product use, and medical system interaction. J Am Board Fam Pract 1997, 10: 265-271.
Groff JL, Gropper SS, Hunt SM: Advanced Nutrition and Human Metabolism. 2nd edition. St. Paul, MN: West Publishing Company; 1995.
Kreider RB: Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med 1999, 27: 97-110. 10.2165/00007256-199927020-00003
Pittler MaxH, Ernst Edzard: Dietary supplements for body-weight reduction: a systematic review. Am J Clin Nutr 2004,79(4):529-536.
Baxter , Jeffrey H 1, Mukerji , Pradip 1, Voss , Anne C 1, Tisdale , Michael J 2, Wheeler , Keith B: Attenuating Protein Degradation and Enhancing Protein Synthesis in Skeletal Muscle in Stressed Animal Model Systems. Medicine & Science in Sports & Exercise 2006,38(5 Supplement):S550-S551.
Smith HJ, Wyke SM, Tisdale MJ: Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by β-hydroxy-β-methylbutyrate. Cancer Res 2004, 64: 8731-5. 10.1158/0008-5472.CAN-04-1760
Payne ET, Yasuda N, Bourgeois JM, Devries MC, Rodriguez MC, Yousuf J, Tarnopolsky MA: Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve 2006,33(1):66-77. 10.1002/mus.20436
Nissen SL, Panton L, Wilhelm R, Fuller JC: Effect of β-hydroxy-β-methylbutyrate (HMB) supplementation on strength and body composition of trained and untrained males undergoing intense resistance training. FASEB J 1996, 10: 287.
Vukovich MD, Stubbs NancyB, Bohlken RuthM: Body Composition in 70-Year-Old Adults Responds to Dietary β-Hydroxy-β-Methylbutyrate Similarly to That of Young Adults. J Nutr 2001, 131: 2049-2052.
Van Koevering MT, Dolezal HG, Grill DR, Owens FN, Strasia CA, Buchanan DS, Lake R, Nissen S: Effects of β-hydroxy β-methylbutyrate on performance and carcass quality of feedlot steers. J Anim Sci 1994, 72: 1927-1935.
Nissen S, Sharp RL, Panton L, Vukovich M, Trappe S, Fuller JC Jr: β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Humans Is Safe and May Decrease Cardiovascular Risk Factors. Journal of Nutrition 2000, 130: 1937-1945.
van Someren K, Edwards A, Howatson G: The effects of hmb supplementation on indices of exercise-induced muscle damage in man. Medicine & Science in Sports & Exercise 2003,35(5):270. 10.1097/00005768-200305001-01498
Janssen GME, Kuipers H, Willems GM, Does RJMM, Janssen MPE, Geurten P: Plasma activity of muscle enzymes: quantification of skeletal muscle damage and relationship with metabolic variables. Int J Sports Med 1989,10(3):S160-S168.
Nuviala RJ, Roda L, Lapieza MG, Boned B, Giner A: Serum enzymes activities at rest and after a marathon race. J Sports Med Phys Fitness 1992, 32: 180-186.
Baxter , Jeffrey H 1, Mukerji , Pradip 1, Voss , Anne C 1, Tisdale , Michael J 2, Wheeler , Keith B: Attenuating Protein Degradation and Enhancing Protein Synthesis in Skeletal Muscle in Stressed Animal Model Systems. Medicine & Science in Sports & Exercise 2006,38(5 Supplement):S550-S551.
Nissen SR, Sharp M, Ray JA, Rathmacher D, Rice JC, Fuller Jr, Connelly AS, Abumrad N: Effect of leucine metabolite beta -hydroxy-beta -methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 1996, 81: 2095-2104.
van Someren K, Edwards A, Howatson G: Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab 2005,15(4):413-24.
Panton LB, Rathmacher JA, Baier S, Nissen S: Nutritional supplementation of the leucine metabolite beta-hydroxy-beta-methylbutyrate (hmb) during resistance training. Nutr 2000,16(9):734-9. 10.1016/S0899-9007(00)00376-2
Thomson JS: beta-Hydroxy-beta-Methylbutyrate (HMB) supplementation of resistance trained men. Asia Pac J Clin Nutr 2004,13(Suppl):S59.
Neighbors KL, Ransone JW, Jacobson BH, LeFavi RG: Effects of dietary β-hydroxy-β-methylbutyrate on body composition in collegiate football players. Med & Sci in Sports & Exerc 2000, 32: S60.
Nissen S, Sharp RL: Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J Appl Physiol 2003, 94: 651-659.
Vukovich MD, Dreifort GD: Effect of β-Hydroxy β-Methylbutyrate on the Onset of Blood Lactate Accumulation and O2peak in Endurance-Trained Cyclists. The Journal of Strength and Conditioning Research 2001,15(4):491-497.
Vukovich MatthewD, Adams GD: Effect of β-hydroxy β-methylbutyrate (HMB) on vo2peak and maximal lactate in endurance trained cyclists. Medicine & Science in Sports & Exercise 1997,29(5):252.
Byrd PL, Mehta PM, DeVita PFACSM, Dyck D, Hickner RC: changes in muscle soreness and strength following downhill running: effects of creatine, hmb, and betagen supplementation. Medicine & Science in Sports & Exercise 1999,31(5):263. 10.1097/00005768-199905001-01272
Flakoll P, Sharp R, Baier S, Levenhagen D, Carr C, Nissen S: Effect of beta-hydroxy-beta-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition 2004,20(5):445-51. 10.1016/j.nut.2004.01.009
Vukovich , Stubbs NB, Bohlken RM, Desch MF, Fuller JC, Rathmacher JA: The effect of dietary β-hydroxy-β-methylbutyrate (HMB) on strength gains and body composition changes in older adults [abstract]. FASEB J 1997, 11: A376.
Panton L, Rathmacher J, Fuller J, Gammon J, Cannon L, Stettler S, Nissen S: Effect of β-hydroxy-β-methylbutyrate and resistance training on strength and functional ability in the elderly. Medicine & Science in Sports & Exercise 1998,30(5):194. 10.1097/00005768-199805001-01101
Soares JMC, Póvoas S, Neuparth MJ, Duarte JA: The effects of beta-hydroxy-beta-methylbuturate (HMB) on muscle atrophy induced by immobilization. Medicine & Science in Sports & Exercise 2001,33(5):140. 10.1097/00005768-200105001-00799
Rathmacher JA: Effect of the leucine metabolite β-hydroxy-β-methylbutyrate on muscle protein synthesis during prolonged bedrest. FASEB J 1999, 13: A1025.
Rathmacher JA, Zachwieja JJ, Smith SR, Lovejoy JL, Bray GA: The effect of the leucine metabolite β-hydroxy-β-methylbutyrate on lean body mass and muscle strength during prolonged bedrest. FASEB J 1999, 13: A909.
Cohen DD: The effect of β-hydroxy-β-methylbutyrate (HMB) and resistance training on changes in body composition during positive and negative energy balance – a randomized double-blind study. In MSc Thesis. St. Bartholomew's and Royal London School of Medicine and Dentistry – Queen Mary and Westfield College, University of London, London; 1997.
Coelho C, Carvalho : Effects of hmb supplementation on ldl-cholesterol, strength and body composition of patients with hypercholesterolemia. Medicine & Science in Sports & Exercise 2001,33(5):M 340.
Sapir DG, Owen OE, Pozefsky T, Walser M: Nitrogen sparing induced by a mixture of essential amino acids given chiefly as their keto analogs during prolonged starvation in obese subjects. J Clin Invest 1974, 54: 974-980.
Tischler ME, Desautels M, Goldberg AL: Does leucine, Leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 1982, 257: 1613-1621.
Clark RH, Feleke G, Din M, Yasmin T, Singh G, Khan FA, Rathmacher JA: Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy beta-methylbutyrate, glutamine, and arginine: a randomized, double-blind, placebo-controlled study. JPEN J Parenter Enteral Nutr 2000,24(3):133-9.
May PE, Barber A, D'Olimpio JT, Hourihane A, Abumrad NN: Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg 2002,183(4):471-9. 10.1016/S0002-9610(02)00823-1
Alon T, Bagchi D, Preuss HG: Supplementing with beta-hydroxy-beta-methylbutyrate (HMB) to build and maintain muscle mass: a review. Res Commun Mol Pathol Pharmacol 2002,111(1–4):139.
Cheng W, Phillips B, Abumrad N: Beta-hydroxy-beta-methyl butyrate increases fatty acid oxidation by muscle cells. FASEB J 1997, 11: A381.
Cheng W, Phillips B, Abumrad N: Effect of HMB on fuel utilization, membrane stability and creatine kinase content of cultured muscle cells. FASEB J 1998, 12: A950.
Ostaszewksi , Grzelkowska PK, Balasinska B, Barej W, Nissen S: Effects of 3-hydroxy 3-methyl butyrate and 2-oxoisocaporate on body composition and cholesterol metabolism in rabbits. VII Symposium on Protein Metabolism and Nutrition 1995. Vale de Santarim 162.
Ostaszewksi P, Kostiuk S, Balasinska B, Papet I, Glomot F, Nissen S: The effects of 3-hydroxy 3-methyl butyrate (HMB) on muscle protein synthesis and protein breakdown in chick and rat muscle (Abstract). J Anim Sci 1996, 74: 138.
Ostaszewski P, Kostiuk S, Balasinska B, Jank M, Papet I, Glomot F: The leucine metabolite 3-hydroxy-3-methylbutyrate (HMB) modifies protein turnover in muscles of the laboratory rats and domestic chickens in vitro. J. Anim Physiol Anim Nutr 2000, 84: 1-8. 10.1046/j.1439-0396.2000.00272.x
Nissen SL, Panton L, Fuller J, Rice D, Ray M, Sharp R: Effect of feeding β-hydroxy-β-methylbutyrate (HMB) on body composition and strength of women. FASEB J 1997, 11: A150.
Kreider RB, Ferreira M, Wilson M, Almada AL: Effects of calcium β-hydroxy-β-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med 1999,20(8):503-9. 10.1055/s-1999-8835
Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, Hahn AG: Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab 2001,11(3):384-96.
Paddon-Jones D, Keech A, Jenkins D: Short-term beta-hydroxy-beta-methylbutyrate supplementation does not reduce symptoms of eccentric muscle damage. Int J Sport Nutr Exerc Metab 2001,11(4):442-50.
Hewitt JenniferA, David Nunan, Glyn Howatson, van Someren , Ken A, Whyte , Gregory P: HMB and KIC Supplementation Does Not Reduce Signs and Symptoms of Exercise-Induced Muscle Damage. Medicine & Science in Sports & Exercise 2006,38(5):S401. 10.1249/00005768-200605001-01694
Ransone Jack, nNeighbors Kerri, Lefavi Robert, Chromiak Joseph: The Effect of β-Hydroxy β-Methylbutyrate on Muscular Strength and Body Composition in Collegiate Football Players. The Journal of Strength and Conditioning Research 2003,17(1):34-39.
Hoffman JayR, Cooper Joshua, Wendell Michael, Im Joohee, Kang Jie: Effects of β-Hydroxy β-Methylbutyrate on Power Performance and Indices of Muscle Damage and Stress During High-Intensity Training. The Journal of Strength and Conditioning Research 2004,18(4):747-752. 10.1519/13973.1
Kreider RB, Ferreira M, Greenwood M, Wilson M, Grindstaff P, Plisk S, Reinardy J, Cantler C, Almada AL: Effects of calcium B-HMB supplementation during training on markers of catabolism, body composition, strength and sprint performance. Journal of Exercise Physiology online 2000,3(4):48-59.
Schmidt RA, Lee TL: Motor control and learning. 3rd edition. Champaign: Human Kinetics; 1999.
Wilson JM: Hull's Quantitative Equation on Human Performance. The Journal of Hyperplasia Research 2005., 5: [ http://www.abcbodybuilding.com/hull.pdf ]
Weinberg R, Gould D: Foundations of Sport and Exercise Psychology: Human Kinetics. 2003.
Wilson GJ: The Effects of External Rewards on Intrinsic Motivation. The Journal of Hyperplasia Research 2006., 6: [ http://www.abcbodybuilding.com/rewards.pdf ]
Pyrczak F: Statistics with a Sense of Humor. Second edition. Pyrczak Publishing; 1999.
Cohen J: The Statistical Power of Abnormal-Social Psychological Research: A Review. Journal of Abnormal and Social Psychology 1962,65(3):145-153. 10.1037/h0045186
Cohen J: Statistical Power Analysis for the Behavioral Sciences. 2nd edition. New York: Academic Press; 1988.
Bloomer RichardJ, Goldfarb AllanH: Can nutritional supplements reduce exercise-induced skeletal muscle damage? Strength and Conditioning Journal 2003,25(5):30-37.
Zatsiorsky VM, Kraemer WJ: Science and Practice of Strength Training. 2nd edition. Champaign IL: Human Kinetics; 2006.
Nosaka K, Sakamoto K, Newton M, Sacco P: The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol 2001,85(1–2):34-40. 10.1007/s004210100430
Proteau L, Marteniuk RG, Levesque L: A sensorimotor basis for motor learning: Evidence indicating specificity of practice. Quarterly Journal of Experimental Psychology 1992, 44A: 557-575.
Fleck SJ, Kraemer WJ: Designing Resistance Training Programs. 3rd edition. Champaign, IL: Human Kinetics; 2004.
Wilson J, Wilson G: The Specificity Hypothesis–A Critical Review. The Journal of Hyperplasia Research 2005., 5: [ http://www.abcbodybuilding.com/specificityindex.php ]
Rivenes R, Sawyer D: The specificity of motor performance: Reexamination of the Fleishman data. Int Sports J 1999, 3: 22-29.
Schott J, McCully K, Rutherford OM: The role of metabolites in strength training. II. Short versus long isometric contractions. Eur J Appl Physiol Occup Physiol 1995,71(4):337-41. 10.1007/BF00240414
Bray SR, Widmeyer WN: Athletes' perceptions of the home advantage: An investigation of perceived causal factors. Journal of Sport Behavior 2000, 23: 1-10.
Slater , Gary , Jenkins J, David : Beta-Hydroxy-beta-Methylbutyrate (HMB) Supplementation and the Promotion of Muscle Growth and Strength. Sports Medicine 2000,30(2):105-116. 10.2165/00007256-200030020-00004
Décombaz Jacques, Bury Alexandre, Hager Corinne, Nissen StevenL, Sharp RickL: HMB meta-analysis and the clustering of data sources. J Appl Physiol 2003, 95: 2180-2182.
ISSA: The Truth about HMB.2005. [ http://www.bodybuilding.com/fun/issa73.htm ]
Phillips B: Sports Supplement Review . Golden, CO: Mile High; 1997.
Gallagher PM, Carrithers JA, Goodard MP, Schulze KE, Trappe SW: β-Hydroxy-β-methylbutyrate ingestion, Part II: Effects on hematology, hepatic and renal function. Med Sci Sports Exerc 2000, 32: 2116-2119. 10.1097/00005768-200012000-00023
Nissen SL, Abumrad N: Nutritional role of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). J Nutr Biochem 1997, 8: 300-311. 10.1016/S0955-2863(97)00048-X
Nissen S, Faidley TD, Zimmerman DR, Izard R, Fisher CT: Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite β-hydroxy β-methylbutyrate to sows. J Anim Sci 1994, 72: 2332-2337.
Nissen S, Fuller JC Jr, Sell J, Ferket PR, Rives DV: The effect of β-hydroxy-β-methylbutyrate on growth, mortality and carcass qualities of broiler chickens. Poult Sci 1994, 73: 137-155.
Peterson AL, Qureshi MA, Ferket PR, Fuller JC Jr: Enhancement of cellular and humoral immunity in young broilers by the dietary supplementation of β-hydroxy-β-methylbutyrate. Immunopharm Immunotoxicol 1999,21(2):307-330. 10.3109/08923979909052765
Peterson AL, Qureshi MA, Ferket PR, Fuller JC Jr: In vitro exposure with beta-hydroxy-beta-methylbutyrate enhances chicken macrophage growth and function. Vet Immunol Immunopathol 1999,4;67(1):67-78. 10.1016/S0165-2427(98)00211-6
Nissen S, Morrical D, Fuller JC Jr: The effects of the leucine catabolite β-hydroxy-β-methylbuyrate on the growth and health of growing lambs. J Anim Sci 1994, 77: 243.
Vukovich MD, Slater G, Macchi MB, Turner MJ, Fallon K, Boston T, Rathmacher J: beta-hydroxy-beta-methylbutyrate (HMB) kinetics and the influence of glucose ingestion in humans. J Nutr Biochem 2001,12(11):631-639. 10.1016/S0955-2863(01)00182-6
Smith HJ, Mukerji P, Tisdale MJ: Attenuation of proteasome-induced proteolysis in skeletal muscle by β-hydroxy-β-methylbutyrate in cancer-induced muscle loss. Cancer Res 2005, 65: 277-83. 10.1158/0008-5472.CAN-05-0169
Bachhawat BK, Robinson WG, Coon MJ: Enzymatic carboxylation of beta-hydroxyisovaleryl coenzyme A. J Biol Chem 1956, 219: 539-550.
Bastiaanse EM, Hold KM, Van der Laarse A: The effect of membrane cholesterol content on ion transport processes in plasma membranes. Cardiovasc Res 1997, 33: 272-283. 10.1016/S0008-6363(96)00193-9
Pierno S, De Luca A, Tricarico D, Roselli A, Natuzzi F, Ferrannini E, Laico M, Camerino DC: Potential risk of myopathy by HMG-CoA reductase inhibitors: a comparison of pravastatin and simvastatin effects on membrane electrical properties of rat skeletal muscle fibers. J Pharmacol Exp Ther 1995, 275: 1490-1496.
Mutoh T, Kumano T, Nakagawa H, Kuriyama M: Role of tyrosine phosphorylation of phospholipase C gamma1 in the signaling pathway of HMG-CoA reductase inhibitor-induced cell death of L6 myoblasts. FEBS Lett 1999, 446: 91-94. 10.1016/S0014-5793(99)00188-X
Ditscheid B, Keller S, Jahreis G: Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J Nutr 2005,135(7):1678-82.
Soma MR, Corsini A, Paoletti R: Cholesterol and mevalonic acid modulation in cell metabolism and multiplication. Toxicol Lett 1992,64–65(Spec No):1-15. 10.1016/0378-4274(92)90167-I
Evans M, Rees A: Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Safety 2005, 25: 649-663. 10.2165/00002018-200225090-00004
Miles L, Miles MV, Tang PH, Horn PS, Wong BL, DeGrauw TJ, Morehart PJ, Bove KE: Muscle coenzyme Q: a potential test for mitochondrial activity and redox status. Pediatr Neurol 2005,32(5):318-24. 10.1016/j.pediatrneurol.2005.01.009
Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002, 82: 373-428.
Bartoli M, Richard I: Calpains in muscle wasting. Int J Biochem Cell Biol 2005,37(10):2115-33. 10.1016/j.biocel.2004.12.012
Whitehouse AS, Khal J, Tisdale MJ: Induction of protein catabolism in myotubes by 15(S)-hydroxyeicosatetraenoic acid through increased expression of the ubiquitin-proteasome pathway. Br J Cancer 2003,21(2):155-67.
Whitehouse AS, Tisdale MJ: Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. Biochem Biophys Res Commun 2001, 285: 598-602. 10.1006/bbrc.2001.5209
Riley DA, Ilyina-Kakueva EI, Ellis S, Bain JL, Slocum GR, Sedlak FR: Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats. FASEB J 1999, 4: 84-91.
Day MK, Allen DL, Mohajerani L, Greenisen MC, Roy RR, Edgerton VR: Adaptations of human skeletal muscle fibers to spaceflight. J Gravit Physiol 1995, 2: 47-50.
Bodine SC, Latres E, Baumhueter S, Lai VKM, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TM, Yancopoulos GD, Glass DJ: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294: 1704-1708. 10.1126/science.1065874
Reid MD: Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 2005,288(6):R1423-31.
Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM: Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol 2004, 96: 1943-1953. 10.1152/japplphysiol.00886.2003
Thompson HS, Scordalis SP: Ubiquitin changes in human biceps muscle following exercise-induced damage. Biochem Biophys Res Commun 1994, 204: 1193-1198. 10.1006/bbrc.1994.2589
Anthony JC, Anthony TG, Kimball SR, Jefferson LS: Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr 2001, 131: 856S-60S.
Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR: A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 2006,291(2):E381-E387. 10.1152/ajpendo.00488.2005
Norton LE, Layman DK: Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 2006,136(2):533S-537S.
Willoughby DS, Taylor M, Taylor L: Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 2003, 35: 2023-2031. 10.1249/01.MSS.0000099100.83796.77
Toledo FG, Watkins S, Kelley DE: Changes induced by physical activity and weight loss in the morphology of inter-myofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 2006,92(5):1827-1833.
Anonymous: Supplement Review – Calcium. The Journal of Hyperplasia Research 2003., 3: [ http://www.abcbodybuilding.com/calcium.pdf ]
Nonnecke BJ, Franklin ST, Nissen SL: Leucine and its catabolites alter mitogen-stimulated DNA synthesis by bovine lymphocytes. J Nutr 1991, 121: 1665-1672.
Rao RD, Buckner JC, Sarkaria JN: Mammalian target of rapamycin (mTOR) inhibitors as anti-cancer agents. Curr Cancer Drug Targets 2004,4(8):621-35. 10.2174/1568009043332718
Biolo G, Tipton KD, Klein S, Wolfe RR: An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 1997, 273: E122-9.