Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen Plain grassland in Northeast China
Tóm tắt
It has been well demonstrated that plant growth regulators have important functions in multiple physiological processes. ABA and BR play crucial roles in response of crops to stresses. Photosynthetic capacity of Leymus. chinensis treated by various concentrations of ABA and BR in combination was determined. Further more, the mechanisms of ABA and BR treatments and potential for recovery of saline-alkali grasslands were discussed. Abscisic acid (ABA) and brassinolide (BR) affected leaf gas exchange, growth and biomass of L. chinensis. The application of ABA and BR mixtures, especially that of 0.01 mM ABA and 2 × 10-4 mM BR, increased the net photosynthetic rate, stomatal conductance, water use efficiency, the maximum net photosynthetic rate, light-saturated rate, leaf respiration rate, the maximum RUBP carboxylation rate, the maximum electron transport rate, the maximum triose-phosphate utilization, carboxylation efficiency and the quantum efficiency of PSII and subsequently enhanced density, height and biomass in L. chinensis. We also observed reduction in the light compensation and saturation points following the application of ABA and BR treatments. We concluded that proper use of plant growth regulators can enhance the plant growth and productivity on the Songnen grassland, which is particularly important for the improvement of saline – alkaline grassland and the yield of grazing lands.
Tài liệu tham khảo
Bajguz A, Hazat S: Effects of brassinosteroids on the plant responses to environmental stress. Plant Physiol Biochem 2009, 47: 1–8. 10.1016/j.plaphy.2008.10.002
Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z: Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis . Plant Physiol 2004, 134: 1624–1631. 10.1104/pp.103.036897
Chen JH, Mao D, Ma ZY: Physiological Characteristics of Leaves of Bamboo Phyllostachvs pubescens. J Cent S Forest Univ 2006, 6: 77–81.
Chen LX, Li YH, Zheng FE: Effect of brassinosteroids on soybean resistance to phytophthora sojae. Soybean Sci 2007, 5: 713–727.
Ding JX, Ma GR, Huang SQ, Zhao YM: Studies on physiological effects of epiBR on cucumber ( Cucumis sativus L). J Zhejiang Agric Univ 1995, 6: 615–621.
Dordas CA, Sioulas C: Safflower yield, chlorophyll content, photosynthesis and water use efficiency response to nitrogen fertilization under rain fed conditions. Ind Crop Prod 2007, 1: 75–85.
Field CB, Ball JT, Berry JA (Eds): Plant Physiological Ecology. New York: Chapman and Hall Press; 1989:209–253.
Franks PJ, Farquhar GD: The Effect of Exogenous Abscisic Acid on Stomatal Development, Stomatal Mechanics, and Leaf Gas Exchange in Tradescantia virginiana . Plant Physiol 2001, 2: 935–942.
Hou LP, Li ML: Progress of Studies on the Plant Growth Promoting Mechanism of Brassinolide(BR). Chinese Bull Bot 2001, 5: 560–566.
Jia HS, Lu CM: Effects of abscisic acid on photo inhibition in maize plants. Plant Sci 2003, 165: 1403–1410. 10.1016/j.plantsci.2003.08.004
Khripach V, Zhabinskii V, Groot AD: Twenty years of Brassinosteroids: Steroidal plant hormones waeant better crops for the XXI century. Ann Bot 2000, 86: 441–447. 10.1006/anbo.2000.1227
Krouk G, Ruffel S, Rodrigo A, Gutie’rrez RA: A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 2011, 4: 178–182.
Li JD, Zheng HY (Eds): The Control of Alkalinized-Salinized Grasslands in the Songnen Plain and Their Mechanisms. Beijing: Science Press; 1997:5–102.
Li X, Zhang L, He X: Effects of abscisic acid on photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings. Chinese J App Ecol 2006, 5: 822–826.
Liu DB, Wei JY, Li SP, Cui BM, Peng M: Effects of Brassinolid on chilling-resistance in banana Seedlings. Bull Bot Res 2008, 2: 195–221.
Long SP, Bernacchi CJ: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 2003, 54: 2393–2401. 10.1093/jxb/erg262
Mawson BT, Colman B, Cummin WR: Abscisic Acid and Photosynthesis in Isolated Leaf Mesophyll Cell. Plant Physiol 1981, 2: 233–236.
Mclaren JS, Smith H: Effect of abscisic acid on photosynthetic products of Lemna minor . Phytochemistry 1977, 2: 219–221.
Olsson T, Leverenz JW: Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve. Plant Cell Environ 1994, 17: 701–710. 10.1111/j.1365-3040.1994.tb00162.x
Peleg Z, Blumwald E: Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 2011, 14: 290–295. 10.1016/j.pbi.2011.02.001
Prioul JL, Chartier P: Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO 2 fixation: A critical analysis of the methods used. Ann Bot 1997, 41: 789–800.
Saab IN, Sharp RE, Pritchard J, Voetberg GS: Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 1990, 93: 1329–1336. 10.1104/pp.93.4.1329
Šafránková I, Hejnák V, Stuchlíková K: The effect of abscisic acid on rate of photosynthesis and transpiration in six barley genotypes under water stress. Cereal Res Commun 2007, 2: 1013–1016.
Sankhla N, Huber W: Effect of Abscisic Acid on the Activities of Photosynthetic Enzymes and 14CO 2 Fixation Products in Leaves of Pennisetum typhoides Seedlings. Physiol Plant 1974, 4: 291–294.
Shi LX, Guo JX: Changes in photosynthetic and growth characteristics of Leymus chinensis community along the retrogression on the Songnen grassland in northeastern China. Photosynthetica 2006, 4: 542–547.
Shu HM, Guo SQ, Shen XL, Ni WC: Cotton physiology affected by brassinosteroid under NaCl stress. Jiangsu J of Agr Sci 2011, 6: 1198–1202.
Vardhini BV, Ramr SS: Effect of brassinosteroids on growth, metabolite content and yield of Arachishy pogaea . Phytochemistry 1998, 6: 927–930.
Wang P, Zhou DW: Research on the Utilization Modes of Hordeum Brevisulatum and Leymus Chinensis Based on the Comparison of Photosynthesis and Transpiration. Grassland of China 2004, 26: 3.
Wu CT: The Interaction and Relationship between Nitric Oxide and Phytohormone. Genom App Biol 2010, 6: 1169–1176.
Wu YY, Li PP, Zhao YG, Wang JZ, Wu XG: Study on photosynthetic characteristics of Orychophragmus violaceus related to shade-tolerance. Sci Hortic 2007, 113: 173–176. 10.1016/j.scienta.2007.02.004
Xiao L, Pang RH, Cai RX, Yu P, Huang XH, Wang L: Physiological Effect and Yield Increase Action after Spraying BR in Rice Early Blooming Stage. J Anhui Agri Sci 2007, 11: 3317–3330.
Zhou BY, Guo ZF, Lin L: Effects of Abscisic Acid Application on Photosynthesis and Photochemistry of Stylosanthes guianensis under Chilling Stress. Plant Growth Regul 2006, 3: 195–199.
