Effects of Second-Order Slip Flow and Variable Viscosity on Natural Convection Flow of CNTs Fe 3 O 4 /Water Hybrid Nanofluids due to Stretching Surface

Mathematical Problems in Engineering - Tập 2021 - Trang 1-18 - 2021
Ayele Tulu1, Wubshet Ibrahim1
1Department of Mathematics, Ambo University, Ambo, Ethiopia

Tóm tắt

This study deals with natural convection unsteady flow of CNTs Fe 3 O 4 /water hybrid nanofluids due to stretching surface embedded in a porous medium. Both hybrid nanoparticles of SWCNTs Fe 3 O 4 and MWCNTs Fe 3 O 4 are used with water as base fluid. Effects of hybrid nanoparticles volume friction, second-order velocity slip condition, and temperature-dependent viscosity are investigated. The governing problem of flow is solved numerically employing spectral quasilinearization method (SQLM). The results are presented and discussed via embedded parameters using graphs and tables. The results disclose that the thermal conductivity of CNTs Fe 3 O 4 / H 2 O hybrid nanofluids is higher than that of CNTs H 2 O nanofluids with higher value of hybrid nanoparticle volume fraction. Also, the results show that momentum boundary layer reduces while the thermal boundary layer gros with higher values of temperature-dependent viscosity and second-order velocity slip parameters. The skin friction coefficient improves, and the local heat transfer rate decreases with higher values of nanoparticle volume fraction, temperature-dependent viscosity, and second-order velocity slip parameters. Furthermore, more skin friction coefficients and lower local heat transfer rate are reported in the CNTs Fe 3 O 4 / H 2 O hybrid nanofluid than in the CNTs H 2 O nanofluid. Thus, the obtained results are promising for the application of hybrid nanofluids in the nanotechnology and biomedicine sectors.

Từ khóa


Tài liệu tham khảo

10.1002/htj.21536

10.1016/j.rinp.2018.01.009

P. S. Reddy, 2020, Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation, International Journal of Ambient Energy, 1, 10.1080/01430750.2020.1712240

A. Tulu, 2020, Spectral relaxation method analysis of Casson nanofluid flow over stretching cylinder with variable thermal conductivity and Cattaneo-Christov heat flux model, Heat Transfer, 49, 3433, 10.1002/htj.21781

10.1016/j.physa.2018.12.010

R. Hirlekar, 2009, Carbon nanotubes and its applications: a review, Asian Journal of Pharmaceutical and Clinical Research, 2, 17

10.1016/j.csite.2018.04.004

10.1155/2020/1374658

A. S. Alsagri, 2019, MHD thin film flow and thermal analysis of blood with CNTs nanofluid, Coating, 9, 175, 10.3390/coatings9030175

10.1016/j.physa.2019.01.057

10.1038/nmeth761

C. Srinivasan, 2008, Carbon nanotubes in cancer therapy, Current Science, 94, 300

B. G. P. Singh, 2012, Carbonnanotubes. A novel drug delivery system, International Journal of Research in Pharmacy and Chemistry, 2, 523

10.1039/b908012k

10.1016/j.ijheatmasstransfer.2017.10.036

10.1016/j.applthermaleng.2017.10.074

10.1016/j.physa.2019.01.048

10.1016/j.ijheatmasstransfer.2019.02.097

10.1080/21691401.2017.1389746

10.1007/s13204-013-0216-y

10.1088/1757-899x/202/1/012013

10.3390/ijms141224619

10.1063/5.0010181

10.1016/j.icheatmasstransfer.2014.01.012

S. Manjunatha, 2019, Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection, Heliyon, 5, 10.1016/j.heliyon.2019.e01469

10.1016/j.jallcom.2010.04.169

10.1016/j.ijrefrig.2018.03.014

M. Zaresharif, 2020, An experimental/numerical hydrothermal analysis on natural convection and TiO2-SiO2/W-EG nanofluid’s properties in a hollow/finned cavity, International Journal of Numerical Methods for Heat and Fluid Flow

10.1108/hff-08-2018-0424

10.1016/j.rser.2016.09.108

10.1166/jon.2019.1637

10.1016/j.asej.2015.01.006

10.1016/j.jksus.2017.09.016

N. Halim, 2016, Active and passive controls of nanoparticles in maxwell stagnation point flow over a slipped stretched surface, Meccanica, 52, 1527, 10.1007/s11012-016-0517-9

10.1515/nleng-2016-0013

10.1016/j.aej.2016.03.003

10.1016/j.rinp.2017.12.013

10.1088/1402-4896/ab399f

W. Ibrahim, 2017, Magnetohydrodynamics (MHD) flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condition, Results in Physics, 7, 3723, 10.1016/j.rinp.2017.09.041

10.1063/1.3052923

10.1016/j.rinp.2017.08.015

10.1155/2013/423628

10.1155/2019/4507852

L. N. Trefethen, 2000, Spectral Methods in MATLAB, 1st, 10.1137/1.9780898719598

10.1016/j.icheatmasstransfer.2010.06.018

10.1016/j.ijthermalsci.2011.11.017

10.1002/zamm.19890691115

10.1016/j.ijheatmasstransfer.2010.01.032