Effects of Exercise on Extracellular Vesicles in Patients with Metabolic Dysfunction: a Systematic Review

Journal of Cardiovascular Translational Research - Tập 16 - Trang 97-111 - 2022
Tong Li1, Xiaowan Han2, Shiqi Chen1, Baofu Wang1, Yu Teng1, Weiting Cheng1, Ziwen Lu1, Yang Li1, Xiaoxiao Wu1, Yangyang Jiang1, Lei Wang1, Lisong Liu2, Mingjing Zhao1
1Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
2Department of Cardiac Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China

Tóm tắt

The aim of this study was to investigate the effect of exercise on extracellular vesicles (EVs) in patients with metabolic dysfunction. The literatures were searched until Apr 28, 2022, and 16 studies that met inclusion criteria were included in this review. The results showed that the concentrations of platelet-derived extracellular vesicles (PEVs) and endothelial cell-derived extracellular vesicles (EEVs) decreased after long-term exercise, especially for CD62E+ EEVs and CD105+ EEVs. Simultaneously, exercise improved the concentration of clinical evaluation indicators of metabolic diseases, and the changes in these indicators were positively correlated with the changes of EEVs and PEVs. The concentration of skeletal muscle-derived extracellular vesicles (SkEVs) increased after a single bout of exercise. The aforementioned results indicated that long-term exercise might improve endothelial function and hypercoagulability in patients with metabolic dysfunction. The changes in concentrations of EVs could assist in assessing effect of exercise on patients with metabolic dysfunction.

Tài liệu tham khảo

Akbar, N., Azzimato, V., Choudhury, R. P., & Aouadi, M. (2019). Extracellular vesicles in metabolic disease. Diabetologia, 62(12), 2179–2187. Highton, P. J., Martin, N., Smith, A. C., Burton, J. O., & Bishop, N. C. (2018). Microparticles and exercise in clinical populations. Exercise Immunology Review, 24, 46–58. Li, S., Wei, J., Zhang, C., Li, X., Meng, W., Mo, X., et al. (2016). Cell-derived microparticles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Cellular Physiology and Biochemistry, 39, 2439–2450. https://doi.org/10.1159/000452512 Freeman, D. W., Noren Hooten, N., Eitan, E., et al. (2018). Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes, 67(11), 2377–2388. Théry, C., Witwer, K. W., Aikawa, E., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles., 7, 1535750. van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228. Yáñez-Mó, M., Siljander, P. R., Andreu, Z., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 4, 27066. Tanaka, M., Itoh, M., Ogawa, Y., & Suganami, T. (2018). Molecular mechanism of obesity-induced ‘metabolic’ tissue remodeling. J Diabetes Investig, 9(2), 256–261. Eguchi, A., Mulya, A., Lazic, M., Radhakrishnan, D., Berk, M. P., Povero, D., et al. (2015). Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration. PLoS One, 10, e0123110. https://doi.org/10.1371/journal.pone.0123110 Wadey, R. M., Connolly, K. D., Mathew, D., Walters, G., Rees, D. A., & James, P. E. (2019). Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis, 283, 19–27. https://doi.org/10.1016/j.atherosclerosis.2019.01.013 Pardo, F., Villalobos-Labra, R., Sobrevia, B., Toledo, F., & Sobrevia, L. (2018). Extracellular vesicles in obesity and diabetes mellitus. Molecular Aspects of Medicine, 60, 81–91. Avery, L., Flynn, D., van Wersch, A., Sniehotta, F. F., & Trenell, M. I. (2012). Changing physical activity behavior in type 2 diabetes: A systematic review and meta-analysis of behavioral interventions. Diabetes Care, 35(12), 2681–2689. Dos Santos, J. M., Moreli, M. L., Tewari, S., & Benite-Ribeiro, S. A. (2015). The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: An epigenetic perspective. Metabolism, 64(12), 1619–1628. Gilbertson, N. M., Eichner, N., Francois, M., et al. (2018). Glucose tolerance is linked to postprandial fuel use independent of exercise dose. Medicine and Science in Sports and Exercise, 50(10), 2058–2066. Stepanian, A., Bourguignat, L., Hennou, S., Coupaye, M., Hajage, D., Salomon, L., et al. (2013). Microparticle increase in severe obesity: Not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring), 21, 2236–2243. https://doi.org/10.1002/oby.20365 Campello, E., Zabeo, E., Radu, C. M., Spiezia, L., Gavasso, S., Fadin, M., et al. (2015). Hypercoagulability in overweight and obese subjects who are asymptomatic for thrombotic events. Thrombosis and Haemostasis, 113, 85–96. https://doi.org/10.1160/TH14-02-0156 Murakami, T., Horigome, H., Tanaka, K., et al. (2007). Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thrombosis Research, 119(1), 45–53. Long, D. S., Smith, M. L., Pries, A. R., Ley, K., & Damiano, E. R. (2004). Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proceedings of the National Academy of Sciences U S A, 101(27), 10060–10065. Kawanishi, N., Yano, H., Yokogawa, Y., & Suzuki, K. (2010). Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exercise Immunology Review, 16, 105–118. Ma, C., Wang, J., Liu, H., et al. (2018). Moderate exercise enhances endothelial progenitor cell exosomes release and function. Medicine and Science in Sports and Exercise, 50, 2024–2032. Han, X., Li, T., Li, Y., et al. (2021). Exercise and circulating microparticles in healthy subjects. Journal of Cardiovascular Translational Research, 14(5), 841–856. American Diabetes Association Professional Practice Committee, American Diabetes Association Professional Practice Committee:, Draznin, B., Aroda, V. R., Bakris, G., Benson, G., et al. (2022). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care 45, S17–17S38. https://doi.org/10.2337/dc22-S002 Garvey, W. T., Mechanick, J. I., Brett, E. M., Garber, A. J., Hurley, D. L., Jastreboff, A. M., et al. (2016). American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. Endocrine Practice, 22(Suppl 3), 1–203. https://doi.org/10.4158/EP161365.GL Unger, T., Borghi, C., Charchar, F., Khan, N. A., Poulter, N. R., Prabhakaran, D., et al. (2020). 2020 International Society of Hypertension global hypertension practice guidelines. Journal of Hypertension, 38, 982–1004. https://doi.org/10.1097/HJH.0000000000002453 Zhang, T. S., Zhong, W. Z., & Li, B. (2014). Practical evidence-based medicine methodology (2nd ed.). Central South University Press. Bruyndonckx, L., Hoymans, V. Y., De Guchtenaere, A., et al. (2015). Diet, exercise, and endothelial function in obese adolescents. Pediatrics, 135(3), e653–e661. Durrer, C., Robinson, E., Wan, Z., et al. (2015). Differential impact of acute high-intensity exercise on circulating endothelial microparticles and insulin resistance between overweight/obese males and females. PLoS One, 10(2), e0115860. Kim, J. S., Kim, B., Lee, H., et al. (2015). Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. American Journal of Physiology Heart and Circulatory Physiology, 309(3), H425–H433. Dimassi, S., Karkeni, E., Laurant, P., Tabka, Z., Landrier, J. F., & Riva, C. (2018). Microparticle miRNAs as biomarkers of vascular function and inflammation response to aerobic exercise in obesity. Obesity (Silver Spring), 26(10), 1584–1593. Bratseth, V., Chiva-Blanch, G., Byrkjeland, R., Solheim, S., Arnesen, H., & Seljeflot, I. (2019). Elevated levels of circulating microvesicles in coronary artery disease patients with type 2 diabetes and albuminuria: Effects of exercise training. Diabetes and Vascular Disease Research, 16(5), 431–439. Lechner, K., Von Korn, P., Kia, S., et al. (2019). Exercise intensity and volume differentially impact on innate and adaptive immunity in patients with metabolic syndrome. European Journal of Preventive Cardiology 26: S38. Nielsen, M. H., Sabaratnam, R., Pedersen, A., Højlund, K., & Handberg, A. (2019). Acute exercise increases plasma levels of muscle-derived microvesicles carrying fatty acid transport proteins. Journal of Clinical Endocrinology and Metabolism, 104(10), 4804–4814. Rafiei, H., Robinson, E., Barry, J., Jung, M. E., & Little, J. P. (2019). Short-term exercise training reduces glycaemic variability and lowers circulating endothelial microparticles in overweight and obese women at elevated risk of type 2 diabetes. European Journal of Sport Science, 19(8), 1140–1149. Eichner, N., Gilbertson, N. M., Heiston, E. M., et al. (2020). Interval exercise lowers circulating CD105 extracellular vesicles in prediabetes. Medicine and Science in Sports and Exercise, 52(3), 729–735. Rigamonti, A. E., Bollati, V., Pergoli, L., et al. (2020). Effects of an acute bout of exercise on circulating extracellular vesicles: Tissue-, sex-, and BMI-related differences. International Journal of Obesity, 44(5), 1108–1118. Apostolopoulou, M., Mastrototaro, L., Hartwig, S., Pesta, D., Straßburger, K., de Filippo, E., et al. (2021). Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. Science Advances, 7, eabi9551. https://doi.org/10.1126/sciadv.abi9551 Waclawovsky, G., Boll, L., Eibel, B., et al. (2021). Individuals with controlled hypertension show endothelial integrity following a bout of moderate-intensity exercise: Randomized clinical trial. Science and Reports, 11(1), 8528. Yan, Y., Wang, Z., Wang, Y., & Li, X. (2021). Effects of acute moderate-intensity exercise at different duration on blood pressure and endothelial function in young male patients with stage 1 hypertension. Clinical and experimental hypertension CHE, 43(8), 691–698. https://doi.org/10.1080/10641963.2021.1945074 Heiston, E. M., Ballantyne, A., La Salvia, S., Musante, L., Erdbrügger, U., & Malin, S. K. (2022). Acute exercise decreases insulin-stimulated extracellular vesicles in conjunction with augmentation index in adults with obesity. J. Physiol. (Lond.) . https://doi.org/10.1113/JP282274 Warnier, G., De Groote, E., Britto, F. A., Delcorte, O., Nederveen, J. P., Nilsson, M. I., et al. (2022). Effects of an acute exercise bout in hypoxia on extracellular vesicle release in healthy and prediabetic subjects. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 322(2), R112-112R122. https://doi.org/10.1152/ajpregu.00220.2021 Yong, P. J., Koh, C. H., & Shim, W. S. (2013). Endothelial microparticles: Missing link in endothelial dysfunction. European Journal of Preventive Cardiology, 20(3), 496–512. Kizhakekuttu, T. J., Wang, J., Dharmashankar, K., et al. (2012). Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus-related endothelial dysfunction in humans. Arteriosclerosis Thrombosis and Vascular Biology, 32(10), 2531–2539. Kluge, M. A., Fetterman, J. L., & Vita, J. A. (2013). Mitochondria and endothelial function. Circulation Research, 112(8), 1171–1188. Shao, H., Im, H., Castro, C. M., Breakefield, X., Weissleder, R., & Lee, H. (2018). New Technologies for analysis of extracellular vesicles. Chemical Reviews, 118(4), 1917–1950. Wang, B., Li, T., Han, X., Li, Y., Cheng, W., Wang, L., et al. (2020). The level of circulating microparticles in patients with coronary heart disease: A systematic review and meta-analysis. Journal of Cardiovascular Translational Research, 13, 702–712. https://doi.org/10.1007/s12265-019-09945-7 Liu, C., Xu, X., Li, B., Situ, B., Pan, W., Hu, Y., et al. (2018). Single-exosome-counting immunoassays for cancer diagnostics. Nano Letters, 18, 4226–4232. https://doi.org/10.1021/acs.nanolett.8b01184 Hoshino, A., Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., et al. (2020). Extracellular vesicle and particle biomarkers define multiple human cancers. Cell, 182, 1044-1061.e18. https://doi.org/10.1016/j.cell.2020.07.009 Ceriello, A., Taboga, C., Tonutti, L., et al. (2002). Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: Effects of short- and long-term simvastatin treatment. Circulation, 106(10), 1211–1218. Lupattelli, G., Lombardini, R., Schillaci, G., et al. (2000). Flow-mediated vasoactivity and circulating adhesion molecules in hypertriglyceridemia: Association with small, dense LDL cholesterol particles. American Heart Journal, 140(3), 521–526. Burger, D., Turner, M., Xiao, F., Munkonda, M. N., Akbari, S., & Burns, K. D. (2017). High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia, 60(9), 1791–1800. Jansen, F., Yang, X., Franklin, B. S., et al. (2013). High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research, 98(1), 94–106. Li, T., Lu, X., Sun, Y., & Yang, X. (2016). Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food and Nutrition Research, 60, 32010. Zhang, K. R., Liu, H. T., Zhang, H. F., et al. (2007). Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism. Apoptosis, 12(9), 1579–1588. Zhang, Q. J., Li, Q. X., Zhang, H. F., et al. (2007). Swim training sensitizes myocardial response to insulin: Role of Akt-dependent eNOS activation. Cardiovascular Research, 75(2), 369–380. Xing, W., Li, Y., Zhang, H., et al. (2013). Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats. American Journal of Physiology Heart and Circulatory Physiology, 305(8), H1111–H1119. Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., et al. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43, 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb Weston, K. S., Wisløff, U., & Coombes, J. S. (2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. British Journal of Sports Medicine, 48(16), 1227–1234. Magalhães, J. P., Melo, X., Correia, I. R., Ribeiro, R. T., Raposo, J., Dores, H., et al. (2019). Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: A 1-year randomized controlled trial. Cardiovascular Diabetology, 18, 34. https://doi.org/10.1186/s12933-019-0840-2 Keech, A., Holgate, K., Fildes, J., Indraratna, P., Cummins, L., Lewis, C., et al. (2020). High-intensity interval training for patients with coronary artery disease: Finding the optimal balance. International Journal of Cardiology, 298, 8–14. https://doi.org/10.1016/j.ijcard.2019.09.060 Taylor, J. L., Holland, D. J., Keating, S. E., Leveritt, M. D., Gomersall, S. R., Rowlands, A. V., et al. (2020). Short-term and long-term feasibility, safety, and efficacy of high-intensity interval training in cardiac rehabilitation: The FITR Heart Study Randomized Clinical Trial. JAMA Cardiol, 5, 1382–1389. https://doi.org/10.1001/jamacardio.2020.3511 Ribeiro, J., Almeida-Dias, A., Ascensão, A., et al. (2007). Hemostatic response to acute physical exercise in healthy adolescents. Journal of Science and Medicine in Sport, 10(3), 164–169. Viera, A. J., Mooberry, M., & Key, N. S. (2012). Microparticles in cardiovascular disease pathophysiology and outcomes. Journal of the American Society of Hypertension, 6(4), 243–252. Deng, F., Wang, S., & Zhang, L. (2016). Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of diabetes and its complications: A literature review. BioMed Research International, 2016, 9802026. Green, D. J., O’Driscoll, G., Joyner, M. J., Cable, N. T. (2008). Exercise and cardiovascular risk reduction: time to update the rationale for exercise. Journal of Applied Physiology (1985). 105(2): 766–8. Hambrecht, R., Adams, V., Erbs, S., et al. (2003). Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation, 107(25), 3152–3158. Wilund, K. R. (2007). Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease. Clinical Science (London England), 112(11), 543–555. Tinken, T. M., Thijssen, D. H., Hopkins, N., Dawson, E. A., Cable, N. T., & Green, D. J. (2010). Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension, 55(2), 312–318. Vion, A. C., Ramkhelawon, B., Loyer, X., et al. (2013). Shear stress regulates endothelial microparticle release. Circulation Research, 112(10), 1323–1333. Blache, D., Bourdon, E., Salloignon, P., et al. (2015). Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: Relevance in patients with type 2 diabetes. Diabetes, 64, 960–972. Rusak, T., Misztal, T., Rusak, M., Branska-Januszewska, J., & Tomasiak, M. (2017). Involvement of hyperglycemia in the development of platelet procoagulant response: The role of aldose reductase and platelet swelling. Blood Coagulation and Fibrinolysis, 28, 443–451. Sims, P. J., Wiedmer, T., Esmon, C. T., Weiss, H. J., & Shattil, S. J. (1989). Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. Journal of Biological Chemistry, 264(29), 17049–57. Cohen, Z., Gonzales, R. F., Davis-Gorman, G. F., Copeland, J. G., & McDonagh, P. F. (2002). Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: A potential correlation with caspase activation. Thrombosis Research, 107(5), 217–221. Ferreiro, J. L., Gómez-Hospital, J. A., & Angiolillo, D. J. (2010). Platelet abnormalities in diabetes mellitus. Diabetes and Vascular Disease Research, 7, 251–259. Schneider, D. J. (2009). Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care, 32, 525–527. Malin, S. K., Gerber, R., Chipkin, S. R., & Braun, B. (2012). Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care, 35(1), 131–136. Akbar, N., Digby J. E., Cahill T. J., et al. (2017). Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight 2(17). Couch, Y., Akbar, N., Roodselaar, J., et al. (2017). Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation. Science and Reports, 7(1), 9574. Flynn, M. G., & McFarlin, B. K. (2006). Toll-like receptor 4: Link to the anti-inflammatory effects of exercise. Exercise and Sport Sciences Reviews, 34(4), 176–181. Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nature Reviews. Endocrinology, 8(8), 457. Aswad, H., Forterre, A., Wiklander, O. P. B., et al. (2014). Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia, 57(10), 2155. Jalabert, A., Vial, G., Guay, C., et al. (2016). Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia, 59, 1049–1058. Safdar, A., Saleem, A., & Tarnopolsky, M. A. (2016). The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nature Reviews Endocrinology, 12(9), 504. Short, K. R., Chadwick, J. Q., Teague, A. M., et al. (2019). Effect of obesity and exercise training on plasma amino acids and amino metabolites in American Indian adolescents. Journal of Clinical Endocrinology and Metabolism, 104(8), 3249–3261. Taherkhani, S., Suzuki, K., Castell L., (2020). A short overview of changes in inflammatory cytokines and oxidative stress in response to physical activity and antioxidant supplementation. Antioxidants (Basel) 9(9). Richter, E. A., & Hargreaves, M. (2013). Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews, 93(3), 993–1017. Kranendonk, M. E., Visseren, F. L., van Balkom, B. W., Nolte-’t Hoen, E. N., van Herwaarden, J. A., de Jager, W., et al. (2014). Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity, 22(5), 1296–1308. https://doi.org/10.1002/oby.20679 Koeck, E. S., Iordanskaia, T., Sevilla, S., et al. (2014). Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: A novel paradigm for obesity-related liver disease. Journal of Surgical Research, 192(2), 268–275. Gao, J., Li, X., Wang, Y., Cao, Y., Yao, D., Sun, L., et al. (2020). Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus. Acta Physiologica, 228(2), e13339. https://doi.org/10.1111/apha.13339 Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., et al. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651 Camino, T., Lago-Baameiro, N., Bravo, S. B., Molares-Vila, A., Sueiro, A., Couto, I., et al. (2022). Human obese white adipose tissue sheds depot-specific extracellular vesicles and reveals candidate biomarkers for monitoring obesity and its comorbidities. Translational Research The Journal of Laboratory and Clinical Medicine, 239, 85–102. https://doi.org/10.1016/j.trsl.2021.01.006 Nigro, E., Scudiero, O., Monaco, M. L., Palmieri, A., Mazzarella, G., Costagliola, C., et al. (2014). New insight into adiponectin role in obesity and obesity-related diseases. BioMed Research International, 2014, 658913. https://doi.org/10.1155/2014/658913 Corcoran, M. P., Lamon-Fava, S., & Fielding, R. A. (2007). Skeletal muscle lipid deposition and insulin resistance: Effect of dietary fatty acids and exercise. The American Journal of Clinical Nutrition, 85(3), 662–677. https://doi.org/10.1093/ajcn/85.3.662 Boniol, M., Dragomir, M., Autier, P., & Boyle, P. (2017). Physical activity and change in fasting glucose and HbA1c: A quantitative meta-analysis of randomized trials. Acta Diabetologica, 54(11), 983–991. Pan, B., Ge, L., Xun, Y. Q., et al. (2018). Exercise training modalities in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 72. Eichner, N., Erdbrügger, U., & Malin, S. K. (2018). Extracellular vesicles: A novel target for exercise-mediated reductions in type 2 diabetes and cardiovascular disease risk. Journal of Diabetes Research, 2018, 7807245. Morel, O., Luca, F., Grunebaum, L., et al. (2011). Short-term very low-calorie diet in obese females improves the haemostatic balance through the reduction of leptin levels, PAI-1 concentrations and a diminished release of platelet and leukocyte-derived microparticles. International Journal of Obesity, 35(12), 1479–1486. Nakata, M., Yada, T., Soejima, N., & Maruyama, I. (1999). Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes, 48(2), 426–429. Konstantinides, S., Schäfer, K., Koschnick, S., & Loskutoff, D. J. (2001). Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. The Journal of Clinical Investigation, 108(10), 1533–1540. Guagnano, M. T., Romano, M., Falco, A., et al. (2003). Leptin increase is associated with markers of the hemostatic system in obese healthy women. Journal of Thrombosis and Haemostasis, 1(11), 2330–2334. DeSouza, C. A., Jones, P. P., & Seals, D. R. (1998). Physical activity status and adverse age-related differences in coagulation and fibrinolytic factors in women. Arteriosclerosis Thrombosis and Vascular Biology, 18(3), 362–368. Wang, J. S., & Liao, C. H. (2004). Moderate-intensity exercise suppresses platelet activation and polymorphonuclear leukocyte interaction with surface-adherent platelets under shear flow in men. Thrombosis and Haemostasis, 91(3), 587–594. Talanian, J. L., Holloway, G. P., Snook, L. A., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2010). Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. American Journal of Physiology Endocrinology and Metabolism, 299, E180-188. https://doi.org/10.1152/ajpendo.00073.2010 Jeppesen, J., Jordy, A. B., Sjøberg, K. A., Füllekrug, J., Stahl, A., Nybo, L., et al. (2012). Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle. PLoS One, 7, e29391. https://doi.org/10.1371/journal.pone.0029391 Pedersen, B. K. (2013). Muscle as a secretory organ. Comprehensive Physiology, 3, 1337–1362. https://doi.org/10.1002/cphy.c120033 Hou, Z., Qin, X., Hu, Y., Zhang, X., Li, G., Wu, J., et al. (2019). Longterm exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection. Circulation Research, 124, 1386–1400. https://doi.org/10.1161/CIRCRESAHA.118.314635 Wang, J. S., Jen, C. J., & Chen, H. I. (1997). Effects of chronic exercise and deconditioning on platelet function in women. Journal of Applied Physiology, 83, 2080–2085. https://doi.org/10.1152/jappl.1997.83.6.2080 Coumans, F., Brisson, A. R., Buzas, E. I., et al. (2017). Methodological guidelines to study extracellular vesicles. Circulation Research, 120(10), 1632–1648. Wang, S., Khan, A., Huang, R., et al. (2020). Recent advances in single extracellular vesicle detection methods. Biosensors and Bioelectronics, 154, 112056. Hoo, C. M., Starostin, N., West, P., & Mecartney, M. L. (2008). A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research, 10(1), 89. Brahmer, A., Neuberger, E., Simon, P., & Krämer-Albers, E. M. (2020). Considerations for the analysis of small extracellular vesicles in physical exercise. Frontiers in Physiology, 11, 576150.