Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites

Asad Hanif1, Zeyu Lu1, Yu Cheng1, Shen Diao1, Zongjin Li1
1Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271–295. doi: 10.1007/s40069-016-0157-4 .

Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. ACI Journal Proceedings, 23(2), 452–457.

ACI 216.1. (1997). Standard method for determining fire resistance of concrete and masonry construction assemblies.

ACI 213. (2003). Guide for structural lightweight-aggregate concrete.

ACI Committee 318. (2007). Building code requirements for structural concrete (ACI 318M-08) (Vol. 2007).

ASTM C 1437-99. (1999). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, 1–2. doi: 10.1520/C1437-13.2

ASTM C230. (2003). Standard specification for flow table for use in tests of hydraulic cement. American Society for Testing and Materials. doi: 10.1520/C0230

ASTM D790-10. (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. American Society for Testing and Materials. doi: 10.1520/D0790-10

Bouvard, D., Chaix, J. M., Dendievel, R., Fazekas, A., Létang, J. M., Peix, G., et al. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete. Cement and Concrete Research, 37(12), 1666–1673. doi: 10.1016/j.cemconres.2007.08.028 .

Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete: Science, technology, and applications. Norwich, NY: Noyes Publications/William Andrew Publishing.

Chávez-Valdez, A., Arizmendi-Morquecho, A., Vargas, G., Almanza, J. M., & Alvarez-Quintana, J. (2011). Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Materialia, 59(6), 2556–2562. doi: 10.1016/j.actamat.2011.01.011 .

Chen, B., & Liu, N. (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials, 44(2013), 691–698. doi: 10.1016/j.conbuildmat.2013.03.091 .

de Gennaro, R., Langella, A., D’Amore, M., Dondi, M., Colella, A., Cappelletti, P., et al. (2008). Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Applied Clay Science, 41(1–2), 61–72. doi: 10.1016/j.clay.2007.09.008 .

Demirboǧa, R., Örüng, I., & Gül, R. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research, 31(11), 1627–1632. doi: 10.1016/S0008-8846(01)00615-9 .

Ducman, V., & Mladenovic, A. (2004). Alkali—silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 34(2004), 1809–1816. doi: 10.1016/j.cemconres.2004.01.017 .

3M Energy and Advanced Materials Division. 3M™ glass microspheres compounding and injection molding guidelines (2007). http://multimedia.3m.com/mws/media/426234O/3mtm-glass-microspheres-compounding-and-inj-molding-guide.pdf

Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52(2014), 130–136. doi: 10.1016/j.conbuildmat.2013.10.100 .

Hanif, A., Diao, S., Lu, Z., Fan, T., & Li, Z. (2016). Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres—Mechanical and thermal insulating properties. Construction and Building Materials, 116, 422–430. doi: 10.1016/j.conbuildmat.2016.04.134 .

Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement—A review. Construction and Building Materials, 37, 452–461. doi: 10.1016/j.conbuildmat.2012.07.071 .

Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34(11), 8179–8181. doi: 10.1103/PhysRevB.34.8179 .

Ke, Y., Beaucour, A. L., Ortola, S., Dumontet, H., & Cabrillac, R. (2009). Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Construction and Building Materials, 23(8), 2821–2828. doi: 10.1016/j.conbuildmat.2009.02.038 .

Kim, S., Seo, J., Cha, J., & Kim, S. (2013). Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials, 40, 501–505. doi: 10.1016/j.conbuildmat.2012.11.046 .

Kramar, D., & Bindiganavile, V. (2010). Mechanical properties and size effects in lightweight mortars containing expanded perlite aggregate. Materials and Structures, 44(4), 735–748. doi: 10.1617/s11527-010-9662-0 .

Kramar, D., & Bindiganavile, V. (2013). Impact response of lightweight mortars containing expanded perlite. Cement & Concrete Composites, 37(2013), 205–214. doi: 10.1016/j.cemconcomp.2012.10.004 .

Kwan, A. K. H., & Chen, J. J. (2013). Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology, 234(2013), 19–25. doi: 10.1016/j.powtec.2012.09.016 .

Lanzón, M., & García-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798–1806. doi: 10.1016/j.conbuildmat.2007.05.006 .

Li, Z. (2011). Advanced concrete technology. New York, NY: Wiley.

Lotfy, A., Hossain, K. M. A., & Lachemi, M. (2015). Lightweight self-consolidating concrete with expanded shale aggregates: Modelling and optimization. International Journal of Concrete Structures and Materials, 9(2), 185–206. doi: 10.1007/s40069-015-0096-5 .

Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall Ltd. doi: 10.1007/978-94-015-7955-1 .

Lu, Z., Xu, B., Zhang, J., Zhu, Y., Sun, G., & Li, Z. (2014). Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material. Solar Energy, 108, 460–466. doi: 10.1016/j.solener.2014.08.008 .

Ma, H. (2014). Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 21(2), 207–215. doi: 10.1007/s10934-013-9765-4 .

Ma, H., Hou, D., Liu, J., & Li, Z. (2014). Estimate the relative electrical conductivity of C-S-H gel from experimental results. Construction and Building Materials, 71, 392–396. doi: 10.1016/j.conbuildmat.2014.08.036 .

Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computers & Concrete, 11(4), 317–336. doi: 10.12989/cac.2013.11.4.317 .

Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials, 7(3), 239–249. doi: 10.1007/s40069-013-0049-9 .

Miled, K., Sab, K., & Le Roy, R. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials, 39(3), 222–240. doi: 10.1016/j.mechmat.2006.05.008 .

Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., & Wallevik, Ó. H. (2015). Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials, 77, 307–316. doi: 10.1016/j.conbuildmat.2014.12.064 .

Palik, E. S. (1977). Specific surface area measurements on ceramic powders. Powder Technology, 18, 45–48.

Pereira, C. J., Rice, R. W., & Skalny, J. P. (1989). Pore structure and its relationship to properties of materials. In L. R. Roberts & J. P. Skalny (Eds.), Materials research society symposium proceedings (Vol. 137, pp. 3–21). Pittsbutrgh, PA: Materials Research Society.

Pichór, W. (2009). Properties of fiber reinforced cement composites with cenospheres from coal ash. Brittle Matrix Composites, 9, 245. doi: 10.1533/9781845697754.245 .

Rashad, A. M., Seleem, H. E. D. H., & Shaheen, A. F. (2014). Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials, 8(1), 69–81. doi: 10.1007/s40069-013-0051-2 .

Rice, R. W. (1998). Porosity of ceramics: Properties and applications. Boca Raton, FL: CRC Press.

Saradhi Babu, D., Ganesh Babu, K., & Wee, T. H. (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cement and Concrete Research, 35(6), 1218–1223. doi: 10.1016/j.cemconres.2004.11.015 .

Sharifi, Y., Afshoon, I., Firoozjaei, Z., & Momeni, A. (2016). Utilization of waste glass micro-particles in producing self-consolidating concrete mixtures. International Journal of Concrete Structures and Materials. doi: 10.1007/s40069-016-0141-z .

Spiesz, P., Yu, Q. L., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites—Part 2: Durability-related properties. Cement & Concrete Composites, 44(2013), 30–40. doi: 10.1016/j.cemconcomp.2013.03.029 .

Topçu, İ. B., & Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1–3), 34–38. doi: 10.1016/j.jmatprotec.2007.10.052 .

Wang, J.-Y., Chia, K.-S., Liew, J.-Y. R., & Zhang, M.-H. (2013). Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement & Concrete Composites, 43, 39–47. doi: 10.1016/j.cemconcomp.2013.06.006 .

Wang, J. Y., Yang, Y., Liew, J. Y. R., & Zhang, M. H. (2014). Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cement & Concrete Composites, 53, 178–186. doi: 10.1016/j.cemconcomp.2014.07.006 .

Wang, J. Y., Zhang, M. H., Li, W., Chia, K. S., & Liew, R. J. Y. (2012). Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction. Cement and Concrete Research, 42(5), 721–727. doi: 10.1016/j.cemconres.2012.02.010 .

Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 7(4), 115–116. doi: 10.1073/pnas.7.4.115 .

Woignier, T., & Phalippou, J. (1988). Mechanical strength of silica aerogels. Journal of Non-Crystalline Solids, 100(1–3), 404–408. doi: 10.1016/0022-3093(88)90054-3 .

Wu, Y., Wang, J.-Y., Monteiro, P. J. M., & Zhang, M.-H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100–112. doi: 10.1016/j.conbuildmat.2015.04.004 .

Xu, B., Ma, H., & Hu, C. (2015). Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Materials and Structures. doi: 10.1617/s11527-015-0578-6 .

Yu, Q. L., Spiesz, P., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites—Part 1: Mix design methodology and hardened properties. Cement & Concrete Composites, 44(2013), 17–29. doi: 10.1016/j.cemconcomp.2013.03.030 .