Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance

Andrew W Bergen1, Ying Qi2,3, Kashif A Haque3,2, Robert A Welch2,3, Stephen J Chanock2,1,4
1Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
2Core Genotyping Facility, National Cancer Institute, National Institutes of Health, Gaithersburg, USA
3Intramural Research Support Program, SAIC-Frederick, NCI-FCRDC, Frederick, USA
4Section on Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, USA

Tóm tắt

Whole genome amplification (WGA) promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA) quantity. We evaluated the performance of multiple displacement amplification (MDA) WGA using gDNA extracted from lymphoblastoid cell lines (N = 27) with a range of starting gDNA input of 1–200 ng into the WGA reaction. Yield and composition analysis of whole genome amplified DNA (wgaDNA) was performed using three DNA quantification methods (OD, PicoGreen® and RT-PCR). Two panels of N = 15 STR (using the AmpFlSTR® Identifiler® panel) and N = 49 SNP (TaqMan®) genotyping assays were performed on each gDNA and wgaDNA sample in duplicate. gDNA and wgaDNA masses of 1, 4 and 20 ng were used in the SNP assays to evaluate the effects of DNA mass on SNP genotyping assay performance. A total of N = 6,880 STR and N = 56,448 SNP genotype attempts provided adequate power to detect differences in STR and SNP genotyping performance between gDNA and wgaDNA, and among wgaDNA produced from a range of gDNA templates inputs. The proportion of double-stranded wgaDNA and human-specific PCR amplifiable wgaDNA increased with increased gDNA input into the WGA reaction. Increased amounts of gDNA input into the WGA reaction improved wgaDNA genotyping performance. Genotype completion or genotype concordance rates of wgaDNA produced from all gDNA input levels were observed to be reduced compared to gDNA, although the reduction was not always statistically significant. Reduced wgaDNA genotyping performance was primarily due to the increased variance of allelic amplification, resulting in loss of heterozygosity or increased undetermined genotypes. MDA WGA produces wgaDNA from no template control samples; such samples exhibited substantial false-positive genotyping rates. The amount of gDNA input into the MDA WGA reaction is a critical determinant of genotyping performance of wgaDNA. At least 10 ng of lymphoblastoid gDNA input into MDA WGA is required to obtain wgaDNA TaqMan® SNP assay genotyping performance equivalent to that of gDNA. Over 100 ng of lymphoblastoid gDNA input into MDA WGA is required to obtain optimal STR genotyping performance using the AmpFlSTR® Identifiler® panel from wgaDNA equivalent to that of gDNA.

Từ khóa


Tài liệu tham khảo

Collins FS, Morgan M, Patrinos A: The Human Genome Project: lessons from large-scale biology. Science. 2003, 300: 286-290. 10.1126/science.1084564.

Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science. 1996, 273: 1516-1517.

Carlson CS, Eberle MA, Kruglyak L, Nickerson DA: Mapping complex disease loci in whole-genome association studies. Nature. 2004, 429: 446-452. 10.1038/nature02623.

Matsuzaki H, Loi H, Dong S, Tsai YY, Fang J, Law J, Di X, Liu WM, Yang G, Liu G, Huang J, Kennedy GC, Ryder TB, Marcus GA, Walsh PS, Shriver MD, Puck JM, Jones KW, Mei R: Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 2004, 14: 414-425. 10.1101/gr.2014904.

Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A: Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992, 13: 718-725. 10.1016/0888-7543(92)90147-K.

Tanabe C, Aoyagi K, Sakiyama T, Kohno T, Yanagitani N, Akimoto S, Sakamoto M, Sakamoto H, Yokota J, Ohki M, Terada M, Yoshida T, Sasaki H: Evaluation of a whole-genome amplification method based on adaptor-ligation PCR of randomly sheared genomic DNA. Genes Chromosomes Cancer. 2003, 38: 168-176. 10.1002/gcc.10269.

Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M: Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem. 1989, 264: 8935-8940.

Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS: Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002, 99: 5261-5266. 10.1073/pnas.082089499.

Lovmar L, Fredriksson M, Liljedahl U, Sigurdsson S, Syvanen AC: Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res. 2003, 31: e129-10.1093/nar/gng129.

Lasken RS, Egholm M: Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 2003, 21: 531-535. 10.1016/j.tibtech.2003.09.010.

Rook MS, Delach SM, Deyneko G, Worlock A, Wolfe JL: Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping. Am J Pathol. 2004, 164: 23-33.

Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, Rutherford A: Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod. 2004, 10: 767-772. 10.1093/molehr/gah101.

Whitaker JP, Cotton EA, Gill P: A comparison of the characteristics of profiles produced with the AMPFlSTR SGM Plus multiplex system for both standard and low copy number (LCN) STR DNA analysis. Forensic Sci Int. 2001, 123: 215-223. 10.1016/S0379-0738(01)00557-6.

Sobel E, Papp JC, Lange K: Detection and integration of genotyping errors in statistical genetics. Am J Hum Genet. 2002, 70: 496-508. 10.1086/338920.

Bergen AW, Qi Y, Haque KA, Welch RA, Garcia-Closas M, Chanock SJ, Vaught J, Castle PE: Effects of electron-beam irradiation on whole genome amplification. Cancer Epidemiol Biomarkers Prev. 2005, 14: 1016-1019. 10.1158/1055-9965.EPI-04-0686.

Bergen AW, Haque KA, Qi Y, Beerman MB, Garcia-Closas M, Rothman N, Chanock SJ: Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlextrade mark whole genome amplified DNA generated from multiple DNA sources. Hum Mutat. 2005, 26: 262-270. 10.1002/humu.20213.

Langmore JP: Rubicon Genomics, Inc. Pharmacogenomics. 2002, 3: 557-560. 10.1517/14622416.3.4.557.

Wang G, Maher E, Brennan C, Chin L, Leo C, Kaur M, Zhu P, Rook M, Wolfe JL, Makrigiorgos GM: DNA amplification method tolerant to sample degradation. Genome Res. 2004, 14: 2357-2366. 10.1101/gr.2813404.

Bark C, Pettengill J, Tsai YBP, Golembieski J, Gearhart J, Stewart L, Zilka M, Doheny K: Performance of whole genome amplified samples for microsatellite genotyping.: 2004/10/29. 2004, Bethesda, MD, The American Society of Human Genetics

Dickson PA, Montgomery GW, Henders A, Campbell MJ, Martin NG, James MR: Evaluation of multiple displacement amplification in a 5 cM STR genome-wide scan. Nucleic Acids Res. 2005, 33: e119-10.1093/nar/gni126.

Sun G, Kaushal R, Pal P, Wolujewicz M, Smelser D, Cheng H, Lu M, Chakraborty R, Jin L, Deka R: Whole-genome amplification: relative efficiencies of the current methods. Leg Med (Tokyo). 2005, 7: 279-86.

Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvanen AC: A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 2000, 10: 1031-1042. 10.1101/gr.10.7.1031.

Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS: Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol. 2003, 68: 69-78. 10.1101/sqb.2003.68.69.

Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP: Accessing genetic information with high-density DNA arrays. Science. 1996, 274: 610-614. 10.1126/science.274.5287.610.

Barker DL, Hansen MS, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E: Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res. 2004, 14: 901-907. 10.1101/gr.1949704.

Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers WR: Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. 2004, 32: e71-10.1093/nar/gnh069.

Tranah GJ, Lescault PJ, Hunter DJ, De Vivo I: Multiple displacement amplification prior to single nucleotide polymorphism genotyping in epidemiologic studies. Biotechnol Lett. 2003, 25: 1031-1036. 10.1023/A:1024173909401.

Pask R, Rance HE, Barratt BJ, Nutland S, Smyth DJ, Sebastian M, Twells RC, Smith A, Lam AC, Smink LJ, Walker NM, Todd JA: Investigating the utility of combining phi29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray genotyping. BMC Biotechnol. 2004, 4: 15-10.1186/1472-6750-4-15.

Packer BR, Yeager M, Staats B, Welch R, Crenshaw A, Kiley M, Eckert A, Beerman M, Miller E, Bergen A, Rothman N, Strausberg R, Chanock SJ: SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res. 2004, 32 Database issue: D528-D532. 10.1093/nar/gkh005.

Haque KA, Pfeiffer RM, Beerman MB, Struewing JP, Chanock SJ, Bergen AW: Performance of high-throughput DNA quantification methods. BMC Biotechnol. 2003, 3: 20-10.1186/1472-6750-3-20.