Effects of CuO nanoparticles on Lemna minor
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306
Akaighe N, Depner SW, Banerjee S, Sharma VK, Sohn M (2012) The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Sci Total Environ 441:277–289
Chang YN, Zhang MY, Xia L, Zhang J, Xing GM (2012) The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials 5:2850–2871. doi: 10.3390/ma5122850
Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK (2004) Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl Phys Lett 84:1180–1182
Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083–1090
Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57:34–39
Dar MA, Kim YS, Kim WB, Sohn JM, Shin HS (2008) Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl Surf Sci 254:7477–7481
Duman O, Tunc S (2009) The colloidal stability of raw bentonite deformed mechanically by ultrasound. Micropor Mesopor Mater 117:331–338
Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in Zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186
Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225
Jalali-e-Emam SMS, Alizadeh B, Zaefizadeh M, Zakarya RA, Khayatnezhad M (2011) Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genotypes of Colza (Brassica napus L.). Middle East J Sci Res 7:7–11
Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T (2009) CuO nanoparticles catalyzed C–N, C–O, and C–S cross-coupling reactions: scope and mechanism. J Org Chem 74:1971–1976
Li M, Wang GX (2001) Effect of drought stress on activities of cell defense enzymes and lipid peroxidation in Glycyrrhiza uralensis seedlings. Acta Ecol Sin 22:503–507
Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173
Liu W (2006) Determining the activities of catalase (CAT) and peroxidase (POD). In: Chen JX, Wang XF (eds) Manual of Plant Physiology Experiment. South China University of Technology Press, China, pp 72–73
Michael C, Hans-toni R (2002) Phytotoxicity of coloured substances: is Lemna Duckweed an alternative to the algal growth inhibition test? Chemosphere 49:9–15
Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239
Nair R, Varghese SH, Nair BG, Maekawa T, Yoshuda Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–1643
Pejic´ S, Todorovic´ A, Stojiljkovic´ V, Kasapovic´ J, Pajovic´ SB (2009) Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma. Reprod Biol Endocrinol 7:149
Sai Kachout S, Ben Mansoura A, Leclerc JC, Mechergui R, Rejeb MN, Ouerghi Z (2010) Effect of heavy metals on antioxidant activities of Atriplex Hortensis and A. Rosea Ejeafche 9:444–457
Song GL, Hou WH, Wang QH, Wang JL, Jin XC (2006) Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza. Bioresour Technol 97:1865–1869
Song GL, Gao Y, Wu H, Hou WH, Zhang CY, Ma HQ (2012) Physiological effect of anatase TiO2 nanoparticles on Lemina Minor. Environ Toxicol Chem 31:2147–2152
Tkalec M, Željka VC, Regula I (1998) The effect of oil industry ‘‘high density brines’’ on duckweed Lemna minor L. Chemosphere 37:2703–2715
Wang D, Tejerina B, Lagzi I, Kowalczyk B, Grzybowski BA (2011a) Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5:530–536
Wang HF, Zhong XH, Shi WY, Guo B (2011b) Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione perox-idase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. Afr J Biotechnol 10:9213–9217
Wang LY, Wang M, Peng CS, Pan JF (2013) Toxic Effects of Nano-CuO, Micro-CuO and Cu2+ on Chlorella sp. J Environ Prot 4:86–91. doi: 10.4236/jep.2013.41b016
Xia J, Zhao HZ, Lu GH (2013) Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. Biomed Environ Sci 26:742–749
Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O’Brien S (2005) Copper oxide nanocrystals. J Am Chem Soc 127:9506–9511
Žaltauskaitė J, Norvilaitė R (2013) Phytotoxicity of amidosulfuron (sulfonylu-reas herbicide) to aquatic macrophyte Lemna minor L. Biologija 59:165–174
Zhang Q, Xu L, Wang J, Sabbioni E, Piao L, Di Gioacchino M, Niu Q (2013) Lysosomes involved in the cellular toxicity of nano-alumina: combined effects of particle size and chemical composition. J Biol Regul Homeost Agents 27:365–375
Zhao SJ (2000a) Detection of chlorophyll pigment. In: Zou Y (ed) Manual of plant physiology experiment. Chinese Agriculture Press, China, pp 72–75
Zhao SJ (2000b) Detection of the activity of MDA in plant tissue. In: Zou Y (ed) Manual of plant physiology experiment. Chinese Agriculture Press, China, pp 173–174