Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement
Tóm tắt
The objective of this work was to examine the influence of carbonation on the microstructure of cement materials. Different materials, which were CEM I mortar and paste, CEM II mortar and paste, were carbonated at 20 °C, 65 % relative humidity and 20 % of CO2 concentration. The specific surface area and pore size distribution were determined from two methods: nitrogen adsorption and water adsorption. The results showed that: (1) nitrogen adsorption and water adsorption do not cover the same porous domains and thus, we observed conflicts in the results obtained by these two techniques; (2) the CEM II based materials seemed to be more sensible to a creation of mesoporosity after carbonation than the CEM I based materials. The results of this study also helped to explain why observations in the literature diverge greatly on the influence of carbonation on specific surface area.
Tài liệu tham khảo
Arandigoyen, M., Bicer-Simsir, B., Alvarez, J. I., & Lange, D. A. (2006). Variation of microstructure with carbonation in lime and blended pastes. Applied Surface Science,252, 7562–7571.
Baltakys, K., Jauberthie, R., Siauciunas, R., & Kaminskas, R. (2007). Influence of modification of SiO2 on the formation of calcium silicate hydrate. Materials Science-Poland,25(3), 663–670.
Bier, T. A., Kropp, J., Hilsdorf, H. K. (1987). Carbonation and realkalinization of concrete and hydrated cement paste. In: J. C. MASO (Ed.), Durability of construction materials (pp. 927–934, volume 3). London, UK: RILEM, Chapman & Hall Publishers.
Borges, P. H. R., Costa, J. O., Milestone, N. B., Lynsdale, C. J., & Streatfield, R. E. (2010). Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS. Cement and Concrete Research,40, 284–292.
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemical Society,60, 309–319.
Chen, J. J., Thomas, J. J., & Jennings, H. M. (2006). Decalcification shrinkage of cement paste. Cement and Concrete Research,36, 801–809.
Chindaprasirt, P., & Rukzon, S. (2009). Pore structure changes of blended cement pastes containing fly ash, rice husk ash, and palm oil fuel ash caused by carbonation. Journal of Materials in Civil Engineering,21(11), 666–671.
Christophe, C., (2006). La carbonatation. Le Magazine Béton[s], Volume 2, Pages 53–54.
Da Silva, C. A. R., Reis, R. J. P., Lameiras, F. S., & Vasconcelos, W. L. (2002). Carbonation-related microstructural changes in long-term durability concrete. Materials Research,5(3), 287–293.
Darkhmouche, F. Z. (2009). Carbonatation des béton adjuvants à base de ressources locales algériennes. Thèse de Doctorat, Université d’Orléans, Orléans, France.
De Belie, N., Kratky, J., & Van Vlierberghe, S. (2010). Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cement and Concrete Research,40, 1723–1733.
Drouet, E. (2010). Impact de la température sur la carbonatation des matériaux cimentaires—Prise en compte des transferts hydriques. Thèse de Doctorat, Ecole Normale Supérieure de Cachan, Cachan, France.
Eitel, W. (1966). Silicate science: Ceramics and hydraulic binders. New York, NY: Academic press.
Hiromitu, N., & Masako, H. (1991). Analysis of adsorption isotherms of water vapour for nonporous and porous adsorbents. Journal of Colloid and Interface Science,145(2), 405–412.
Hyvert, N. (2009). Application de l’approche probabiliste à la durabilité des produits préfabriqués en béton. Thése de Doctorat, Université Paul Sabatier—Toulouse III, Toulouse, France.
Jaafar, W. (2003). Influence de la carbonatation sur la porosité et la perméabilité des bétons, Diplôme d’études approfondies (Master of advanced studies). Paris, France: Laboratoire Central des Ponts et Chaussées.
Johannesson, B., & Utgenannt, P. (2001). Microstructutals changes caused by carbonation of cement mortar. Cement and Concrete Research,31, 925–931.
Kim, S., Taguchi, S., Ohba, Y., Tsurumi, T., Sakai, E., & Daimon, M. (1995). Carbonation reaction of calcium hydroxide and calcium silicate hydrates. Journal of the Society of Inorganic materials,2(254), 18–25.
Miragliotta, R. (2000). Modélisation des processus physico-chimiques de la carbonatation des bétons préfabriqués—Prise en compte des effets de paroi. Thèse de Doctorat de l’Université de la Rochelle, La Rochelle, France.
Parrott, L. (1944). Moisture conditioning and transport properties of concrete test specimens. Materials and Structure,27, 460–468.
Rarick, R. L., Thomas, J. J., Christensen, B. J., & Jennings, H. M. (1996). Deterioration of the nitrogen BET surface area of dried cement paste with storage time. Advanced Cement Based Materials,3, 72–75.
Saillio, M. (2012). Interactions physiques et chimiques ions-matrice dans les béton sains et carbonatés—Influence sur le transport ionique. Thèse de Doctorat, L’Université Paris- Est Marne La Vallée, La Vallée, France.
Sagawa, T., Nawa, T. (2007). Effect of curing condition and carbonation on hydration of blast furnace slag. Cement Concrete Research and Technology, 18(3), 23–35. (Issue 45).
Suzuki, K., Nishikawa, T., & Ito, S. (1985). Formation and carbonation of C–S–H in water. Cement and Concrete Research,15, 213–224.
Tennis, P. D., & Jennings, H. M. (2000). A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and Concrete Research,30, 855–864.
Thierry, M. (2005). Modelling of atmospheric carbonation of cement based materials considering the kinetic effects and modifications of the microstructure. PhD Thesis, L’école nationale des ponts et chausses, Paris, France.
Thomas, J. J., Hsieh, J., & Jennings, H. M. (1996). Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste. Advanced Cement Based Materials,3, 76–80.
Zhang, Q., Ye, G., & Koenders, E. (2013). Investigation of the structure of heated Portland cement paste by using various techniques. Construction and Building Materials,38, 1040–1050.