Hiệu quả của việc kiểm tra nâng cao trong giai đoạn cấp tính để giảm nhiễm trùng máu liên quan đến catheter tĩnh mạch trung tâm: một nghiên cứu thực địa trước-sau

Springer Science and Business Media LLC - Tập 11 - Trang 1-13 - 2022
Yu Lv1, Xiaobo Huang2, Qian Xiang1, Qin Yang3, Jin Chen1, Minhong Cai1, Pingping Wang1, Ping Jia2, Hui Wang1, Caixia Xie3, Luting Li4, Dingding Zhang5, Daoqiong Wei1, Jiayu Wu1
1Healthcare-Associated Infection Control Center, Sichuan Academy of Medical Sciences, Sichuan People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
2Intensive Care Unit, Sichuan Academy of Medical Sciences, Sichuan People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
3Department of Nursing, Sichuan Academy of Medical Sciences, Sichuan People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
4Development Department, Chengdu Yiou Technology Co. LTD, Chengdu, People’s Republic of China
5Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China

Tóm tắt

Để đánh giá hiệu quả của việc kiểm tra nâng cao đối với thời gian nhiễm trùng máu liên quan đến catheter tĩnh mạch trung tâm (CABSIs) và tác động đến tỷ lệ nhiễm trùng. Một nghiên cứu thực địa so sánh trước-sau được thực hiện tại sáu đơn vị chăm sóc tích cực người lớn. Tất cả bệnh nhân trưởng thành chỉ có một catheter tĩnh mạch trung tâm được đưa vào nghiên cứu trong hai khoảng thời gian liên tiếp. Trong khoảng thời gian can thiệp, đã thêm các kiểm tra chéo mà tất cả bệnh nhân có catheter tĩnh mạch trung tâm (CVC) cần phải thực hiện, bao gồm việc kiểm tra của y tá về thực hành đặt catheter và kiểm tra của bác sĩ về thực hành bảo trì. Các phương pháp ghép điểm khả năng đã được sử dụng để tính đến những yếu tố gây nhiễu tiềm ẩn, và splines hình khối bị giới hạn đã được sử dụng để hình dung rủi ro CABSI. Tổng cộng có 2906 bệnh nhân với 26,157 ngày CVC đã được phân tích. Sau can thiệp, tỷ lệ mắc CABSI giảm từ 10.24 xuống 6.33/1,000 ngày CVC (P < 0.001), và giai đoạn cấp tính tăng nhanh trong rủi ro CABSI đã rút ngắn, từ 6.5 xuống 5 ngày đối với catheter hóa tĩnh mạch đùi và từ 7 xuống 5.5 ngày đối với catheter hóa tĩnh mạch dưới đòn. Đối với catheter hóa tĩnh mạch cổ, giai đoạn khởi phát cấp tính đã biến mất. Kiểm tra nâng cao trong 7 ngày tính theo lịch sau khi đặt CVC đã rút ngắn thời gian giai đoạn cấp tính của CABSI và có xu hướng giảm tỷ lệ CABSI.

Từ khóa

#nhiễm trùng máu #catheter tĩnh mạch trung tâm #kiểm tra nâng cao #giai đoạn cấp tính #nghiên cứu thực địa

Tài liệu tham khảo

European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units. In: ECDC. Annual epidemiological report for 2017. Stockholm: ECDC; 2019. https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-HAI.pdf Accessed June 1, 2022. Takashima M, Schults J, Mihala G, et al. Complication and failures of central vascular access device in adult critical care settings. Crit Care Med. 2018;46(12):1998–2009. https://doi.org/10.1097/CCM.0000000000003370. Ullman AJ, Marsh N, Mihala G, et al. Complications of central venous access devices: a systematic review. Pediatrics. 2015;136:e1331–44. Ista E, van der Hoven B, Kornelisse RF, et al. Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(6):724–34. https://doi.org/10.1016/S1473-3099(15)00409-0. Rosenthal VD, Maki DG, Mehta Y, et al. International nosocomial infection control consortium (INICC) report, data summary of 43 countries for 2007–2012. Device associated module. Am J Infect Control. 2014;42(9):942–56. https://doi.org/10.1016/j.ajic.2014.05.029. National Health Commission of the People`s Republic of China. National report on the services, quality and safety in medical care system (2019). Science and Technology Literature Press, Beijing Milstone AM, Reich NG, Advani S, et al. Catheter dwell time and CLABSIs in neonates with PICCs: a multicenter cohort study. Pediatrics. 2013;132(6):e1609–15. https://doi.org/10.1542/peds.2013-1645. Voets PJGM. Central line-associated bloodstream infections and catheter dwell-time: a theoretical foundation for a rule of thumb. J Theor Biol. 2018;445:31–2. https://doi.org/10.1016/j.jtbi.2018.02.024. Lucet JC, Bouadma L, Zahar JR, et al. Infectious risk associated with arterial catheters compared with central venous catheters. Crit Care Med. 2010;38(4):1030–5. https://doi.org/10.1097/CCM.0b013e3181d4502e. Timsit JF. Scheduled replacement of central venous catheters is not necessary. Infect Control Hosp Epidemiol. 2000;21(6):371–4. https://doi.org/10.1086/501775. Marschall J, Mermel LA, Fakih M, et al. Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(7):753–71. https://doi.org/10.1086/676533. National Health Commission of the People's Republic of China. Guidelines for the prevention and control of vascular catheter related infections (2021 Edition). Infect Dis Info, 2021;34(4):289–295. Lv Y, Huang X, Lan Y, et al. Peripherally inserted central catheters have a protective role and the effect of fluctuation curve feature in the risk of bloodstream infection compared with central venous catheters: a propensity-adjusted analysis. BMC Infect Dis. 2022;22(1):289. Published 2022 Mar 26. https://doi.org/10.1186/s12879-022-07265-x Ider BE, Adams J, Morton A, et al. Using a checklist to identify barriers to compliance with evidence-based guidelines for central line management: a mixed methods study in Mongolia. Int J Infect Dis. 2012;16(7):e551–7. https://doi.org/10.1016/j.ijid.2012.03.006. Berenholtz SM, Pronovost PJ, Lipsett PA, et al. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med. 2004;32(10):2014–20. https://doi.org/10.1097/01.ccm.0000142399.70913.2f. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and non-central line-associated Bloodstream Infection)-Device associated module. Updated January 2022. https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf Meng Q, Liu A. Guidelines for national disease classification and code application. Beijing: China Union Medical University Press; 2017. p. 01. Austin PC. Using the standardized difference to ompare the prevalence of a binary variable etween two groups in observational research. Commun Stat Simul Comput. 2009;38(6):1228–34. https://doi.org/10.1080/03610910902859574. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10(2):150–61. https://doi.org/10.1002/pst.433. Yamakawa K, Gando S, Ogura H, et al. Identifying sepsis populations benefitting from anticoagulant therapy: a prospective cohort study incorporating a restricted cubic spline regression model. Thromb Haemost. 2019;119(11):1740–51. https://doi.org/10.1055/s-0039-1693740. Navaratnam AV, Gray WK, Day J, et al. Patient factors and temporal trends associated with COVID-19 in-hospital mortality in England: an observational study using administrative data. Lancet Respir Med. 2021;9(4):397–406. https://doi.org/10.1016/S2213-2600(20)30579-8. Salazar MC, Rosen JE, Wang Z. Association of delayed adjuvant chemotherapy with survival after lung cancer surgery. JAMA Oncol. 2017;3(5):610–9. Gozu A, Clay C, Younus F. Hospital-wide reduction in central line-associated bloodstream infections: a tale of two small community hospitals. Infect Control Hosp Epidemiol. 2011;32(6):619–22. https://doi.org/10.1086/660098. Sagana R, Hyzy RC. Achieving zero central line-associated bloodstream infection rates in your intensive care unit. Crit Care Clin. 2013;29(1):1–9. https://doi.org/10.1016/j.ccc.2012.10.003. Miller MR, Niedner MF, Huskins WC, et al. Reducing PICU central line-associated bloodstream infections: 3-year results. Pediatrics. 2011;128(5):e1077–83. https://doi.org/10.1542/peds.2010-3675. Chen LF, Vander Weg MW, Hofmann DA, Reisinger HS. The hawthorne effect in infection prevention and epidemiology. Infect Control Hosp Epidemiol. 2015;36(12):1444–50. https://doi.org/10.1017/ice.2015.216. Buetti N, Marschall J, Drees M, et al. Strategies to prevent central line-associated bloodstream infections in acute-care hospitals: 2022 Update [published online ahead of print. Infect Control Hosp Epidemiol. 2022;43(5):1–17. https://doi.org/10.1017/ice.2022.87 Heimann SM, Biehl LM, Vehreschild JJ, et al. Chlorhexidine-containing dressings in the prevention of central venous catheter-related bloodstream infections: a cost and resource utilization analysis. Am J Infect Control. 2018;46(9):992–7. https://doi.org/10.1016/j.ajic.2018.03.006. Delaroche L, Bertine M, Oger P, et al. Evaluation of SARS-CoV-2 in semen, seminal plasma, and spermatozoa pellet of COVID-19 patients in the acute stage of infection. PLoS One. 2021;16(12):e0260187. https://doi.org/10.1371/journal.pone.0260187. Arunkumar G, Devadiga S, McElroy AK, et al. Adaptive immune responses in humans during nipah virus acute and convalescent phases of infection. Clin Infect Dis. 2019;69(10):1752–6. https://doi.org/10.1093/cid/ciz010. Buetti N, Ruckly S, Lucet JC, et al. Short-term dialysis catheter versus central venous catheter infections in ICU patients: a post hoc analysis of individual data of 4 multi-centric randomized trials. Intensive Care Med. 2019;45(12):1774–82. https://doi.org/10.1007/s00134-019-05812-w. Parienti JJ, Mongardon N, Mégarbane B, et al. Intravascular complications of central venous catheterization by insertion site. N Engl J Med. 2015;373(13):1220–9. https://doi.org/10.1056/NEJMoa1500964. Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–7. https://doi.org/10.1001/jama.286.6.700. Buetti N, Ruckly S, Lucet JC, et al. The insertion site should be considered for the empirical therapy of short-term central venous and arterial catheter-related infections. Crit Care Med. 2020;48(5):739–44. https://doi.org/10.1097/CCM.0000000000004270. Brossette SE, Hacek DM, Gavin PJ, et al. A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance? Am J Clin Pathol. 2006;125(1):34–9. Ridgway JP, Sun X, Tabak YP, et al. Performance characteristics and associated outcomes for an automated surveillance tool for bloodstream infection. Am J Infect Control. 2016;44(5):567–71. https://doi.org/10.1016/j.ajic.2015.12.044. Trick WE, Zagorski BM, Tokars JI, et al. Computer algorithms to detect bloodstream infections. Emerg Infect Dis. 2004;10(9):1612–20. https://doi.org/10.3201/eid1009.030978. Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284–92. https://doi.org/10.1093/cid/cit006. Xiaoqin Z, Qian W, Xiaoxiu L, et al. Prognostic value of Charlson weighted index of comorbidities combined sequential organ failure assessment score and procalcitonin in patients with sepsis. Chin Crit Care Med. 2019;11:1335–9. Pronovost PJ, Angus DC, Dorman T, et al. Physician staffing patterns and clinical outcomes in critically ill patients: A systematic review. JAMA. 2002;288:2151–62. https://doi.org/10.1097/01.sa.0000087673.65158.1b.