Cách tiếp cận lý thuyết trường hiệu quả đối với các phân rã vi phạm số lepton K^{\pm} \to \pi^{\mp} l_{\alpha}^{\pm} l_{\beta}^{\pm}: đóng góp tầm xa
Tóm tắt
Từ khóa
#vi phạm số lepton #phân rã K^{\pm} #lý thuyết trường hiệu quả #neutrino #quark-leptonTài liệu tham khảo
Y. Liao, X.-D. Ma and H.-L. Wang, Effective field theory approach to lepton number violating decays K± → π∓l±l±: short-distance contribution, JHEP 01 (2020) 127 [arXiv:1909.06272] [INSPIRE].
CMS collaboration, Search for heavy Majorana neutrinos in μ±μ± + jets events in proton-proton collisions at $$ \sqrt{s} $$ = 8 TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].
W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].
A.S. Barabash, Double beta decay: historical review of 75 years of research, Phys. Atom. Nucl. 74 (2011) 603 [arXiv:1104.2714] [INSPIRE].
KamLAND-Zen collaboration, Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
GERDA collaboration, GERDA results and the future perspectives for the neutrinoless double beta decay search using 76 Ge, Int. J. Mod. Phys. A 33 (2018) 1843004 [INSPIRE].
HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
NA62 collaboration, Searches for lepton number violating K + decays, Phys. Lett. B 797 (2019) 134794 [arXiv:1905.07770] [INSPIRE].
R. Appel et al., Search for lepton flavor violation in K+ decays, Phys. Rev. Lett. 85 (2000) 2877 [hep-ex/0006003] [INSPIRE].
LHCb collaboration, Search for $$ {D}_s^{+} $$ to π+ μ+ μ− and $$ {D}_s^{+} $$ to π−μ+ μ+ decays, Phys. Lett. B 724 (2013) 203 [arXiv:1304.6365] [INSPIRE].
CLEO collaboration, Search for rare and forbidden decays of charm and charmed-strange mesons to final states h±e− + e+ , Phys. Rev. D 82 (2010) 092007 [arXiv:1009.1606] [INSPIRE].
BaBar collaboration, Searches for rare or forbidden semileptonic charm decays, Phys. Rev. D 84 (2011) 072006 [arXiv:1107.4465] [INSPIRE].
E653 collaboration, Upper limits of charm hadron decays to two muons plus hadrons, Phys. Lett. B 345 (1995) 85 [INSPIRE].
LHCb collaboration, Search for Majorana neutrinos in B− → π+ μ−μ− decays, Phys. Rev. Lett. 112 (2014) 131802 [arXiv:1401.5361] [INSPIRE].
BaBar collaboration, Search for lepton-number violating processes in B+ → h−l+ l+ decays, Phys. Rev. D 85 (2012) 071103 [arXiv:1202.3650] [INSPIRE].
BaBar collaboration, Search for lepton-number B+ → X −l+ lt+ violating decays, Phys. Rev. D 89 (2014) 011102 [arXiv:1310.8238] [INSPIRE].
LHCb collaboration, Search for the lepton number violating decays B+ → π−μ+ μ+ and B+ → K−μ+ μ+ , Phys. Rev. Lett. 108 (2012) 101601 [arXiv:1110.0730] [INSPIRE].
LHCb collaboration, Searches for Majorana neutrinos in B− decays, Phys. Rev. D 85 (2012) 112004 [arXiv:1201.5600] [INSPIRE].
BELLE collaboration, Search for lepton-number-violating B+ → D−l+ lt+ decays, Phys. Rev. D 84 (2011) 071106 [arXiv:1107.0642] [INSPIRE].
Belle collaboration, Search for lepton-flavor-violating and lepton-number-violating τ → ℓhh′ decay modes, Phys. Lett. B 719 (2013) 346 [arXiv:1206.5595] [INSPIRE].
E.J. Chun, A. Das, S. Mandal, M. Mitra and N. Sinha, Sensitivity of lepton number violating meson decays in different experiments, Phys. Rev. D 100 (2019) 095022 [arXiv:1908.09562] [INSPIRE].
Belle-II collaboration, Prospects for τ lepton physics at Belle II, arXiv:1906.08950 [INSPIRE].
J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [INSPIRE].
J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
O. Catà and V. Mateu, Chiral perturbation theory with tensor sources, JHEP 09 (2007) 078 [arXiv:0705.2948] [INSPIRE].
G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [arXiv:1709.04486] [INSPIRE].
L. Lehman, Extending the standard model effective field theory with the complete set of dimension-7 operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].
Y. Liao and X.-D. Ma, Renormalization group evolution of dimension-seven baryon- and lepton-number-violating operators, JHEP 11 (2016) 043 [arXiv:1607.07309] [INSPIRE].
Y. Liao and X.-D. Ma, Renormalization group evolution of dimension-seven operators in standard model effective field theory and relevant phenomenology, JHEP 03 (2019) 179 [arXiv:1901.10302] [INSPIRE].
Y. Liao, X.-D. Ma and Q.-Y. Wang, Extending the low energy effective field theory with the complete set of dimension-seven operators, work in preparation.
V. Cirigliano, W. Dekens, M. Graesser and E. Mereghetti, Neutrinoless double beta decay and chiral SU(3), Phys. Lett. B 769 (2017) 460 [arXiv:1701.01443] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J. C 33 (2004) 543 [hep-lat/0311023] [INSPIRE].
V. Cirigliano et al., Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven, JHEP 12 (2017) 082 [arXiv:1708.09390] [INSPIRE].
V. Cirigliano et al., A neutrinoless double beta decay master formula from effective field theory, JHEP 12 (2018) 097 [arXiv:1806.02780] [INSPIRE].
KATRIN collaboration, Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN, Phys. Rev. Lett. 123 (2019) 221802 [arXiv:1909.06048] [INSPIRE].