Effect of tungsten disulfide nanotubes on crystallization of polylactide under uniaxial deformation and annealing

Functional Composite Materials - Tập 2 - Trang 1-11 - 2021
Fausta Loffredo1, Loredana Tammaro1, Tiziana Di Luccio1,2, Carmela Borriello1, Fulvia Villani1, Saverio De Vito3, Karthik Ramachandran2, Julia A. Kornfield2
1Division for Sustainable Materials, ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
2Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
3Division for Photovoltaic and Smart Devices, ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy

Tóm tắt

Tungsten disulfide (WS2) nanotubes (NTs) are examined here as a filler for polylactide (PLA) for their ability to accelerate PLA crystallization and for their promising biocompatibility in relevant to biomedical applications of PLA-WS2 nanocomposites. In this work, we have studied the structural and thermal properties of PLA-WS2 nanocomposite films varying the concentration of WS2 NTs from 0 (neat PLA) to 0.6 wt%. The films were uniaxially drawn at 90 °C and annealed at the same temperature for 3 and 10 min. Using wide angle x-ray scattering, Raman spectroscopy and differential scanning calorimetry, we probed the effects of WS2 NT addition on the structure of the PLA films at various stages of processing (unstretched, stretching, annealing). We found that 0.6 wt% of WS2 induces the same level of crystallinity in as stretched PLA-WS2 as annealing in neat PLA for 10 min. These data provide useful insights into the role of WS2 NTs on the structural evolution of PLA-WS2 composites under uniaxial deformation, and extend their applicability to situations where fine tuning of PLA crystallinity is desirable.

Tài liệu tham khảo

M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly(lactic acid): Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010) H. Tsuji, Autocatalytic hydrolysis of amorphous-made polylactides: Effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43(6), 1789–1796 (2002) H. Tsuji, In vitro hydrolysis of blends from enantiomeric poly(lactide)s. part 4: Well-homo-crystallized blend and nonblended films. Biomaterials 24(4), 537–547 (2003) D.W. Grijpma, H. Altpeter, M.J. Bevis, J. Feijen, Improvement of the mechanical properties of poly(D, L-lactide) by orientation. Polym. Int. 51(10), 845–851 (2002) S. Zhou, X. Deng, X. Li, W. Jia, L. Liu, Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems. J. Appl. Polym. Sci. 91(3), 1848–1856 (2004) S. Jacobsen, H.-G. Fritz, Plasticizing polylactide—The effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. 39(7), 1303–1310 (1999) H. Wang, Z. Qiu, Crystallization kinetics and morphology of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim. Acta 527, 40–46 (2012) D. Cohn, A. Hotovely Salomon, Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26(15), 2297–2305 (2005) M. Day, A.V. Nawaby, X. Liao, A DSC study of the crystallization behavior of polylactic acid and its nanocomposites. J. Therm. Anal. Calorim. 86(3), 623–629 (2006) P. Pan, Z. Liang, A. Cao, Y. Inoue, Layered metal phosphonate reinforced poly (L-lactide) composites with a highly enhanced crystallization rate. ACS Appl. Mater. Interfaces 1(2), 402–411 (2009) G. Papageorgiou, D. Achilias, S. Nanaki, T. Beslikas, D. Bikiaris, PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochim. Acta 511(1), 129–139 (2010) Y. Zhao, Z. Qiu, W. Yang, Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly (L-lactide). J. Phys. Chem. B 112(51), 16461–16468 (2008) H. Pan, Z. Qiu, Biodegradable poly (L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: Enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43(3), 1499–1506 (2010) J. Yu, Z. Qiu, Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces 3(3), 890–897 (2011) W.S. Chow, S.K. Lok, Thermal properties of poly(lactic acid)/ organo-montmorillonite nanocomposites. J. Therm. Anal. Calorim. 95(2), 627–632 (2009) J. Shi, X. Lu, H. Li, D. Li, Isothermal crystallization kinetics and melting behavior of PLLA/f-MWNTs composites. Therm. Anal. Calorim. 117, 1385–1396 (2014). https://doi.org/10.1007/s10973-014-3885-1 I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. U. S. A. 103, 523–528 (2006) K. Ramachandran, Ph.D. thesis “Bioresorbablee Vascular Scaffolds Gain Ductility, Resistance to Hydrolysis, and Radial Strength via a Unique Poly L-lactide Microstructure”, (2019) doi:https://doi.org/10.7907/9146-5159. https://resolver.caltech.edu/CaltechTHESIS:11162018-140640407 M. Pardo, T. Shuster-Meiseles, S. Levin-Zaidman, A. Rudich, Y. Rudich, Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: Relation to inflammatory gene induction and antioxidant response. Environ. Sci. Technol. 48, 3457–3466 (2014) E.B. Goldman, A. Zak, R. Tenne, E. Kartvelishvily, S. Levin-Zaidman, Y. Neumann, R. Stiubea-Cohen, A. Palmon, A.H. Hovav, D.J. Aframian, Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng. Part A 21, 1013–1023 (2015) M. Naffakh, C. Marco, G. Ellis, Development of novel melt-processable biopolymer nanocomposites based on poly(L-lactic acid) and WS2 inorganic nanotubes. Cryst. Eng. Comm 16, 5062–5072 (2014) M. Naffakh, C. Marco, G. Ellis, Non-isothermal cold-crystallization behavior and kinetics of poly(L-lactic acid)/WS2 inorganic nanotube nanocomposites. Polymers 7, 2175–2189 (2015). https://doi.org/10.3390/polym7111507 M. Naffakh, C. Marco, Isothermal crystallization kinetics and melting behavior of poly (L-lactic acid)/WS2 inorganic nanotube nanocomposites. J. Mater. Sci. 50, 6066–6074 (2015). https://doi.org/10.1007/s10853-015-9156-0 H. Shalom, X. Sui, O. Elianov, V. Brumfeld, R. Rosentsveig, I. Pinkas, Y. Feldman, N. Kampf, H. Wagner, N. Lachman, R. Tenne, Nanocomposite of poly(L-lactic acid) with inorganic nanotubes of WS2. Lubricants 7, 28–1–28-21 (2019) L. Tammaro, T. Di Luccio, C. Borriello, F. Loffredo, K. Ramachandran, F. Villani, F. Di Benedetto, T. Schiller, C. Minarini, J.A. Kornfield, Effect of tungsten disulfide (WS2) nanotubes on structural, morphological and mechanical properties of poly(L-Lactide) (PLLA) films. AIP Conference Proc. 1981, 020073–1–020073-4 (2018). https://doi.org/10.1063/1.5045935 K. Bruckmoser, K. Resch, Effect of processing conditions on crystallization behavior and mechanical properties of poly(lactic acid) staple fibers. J. Appl. Polym. Sci. 132(33), 42432–1–42432-10 (2015). https://doi.org/10.1002/APP.42432 E.W. Fischer, H.J. Sterzel, G. Wegner, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z. Z. Polym. 251, 980–990 (1973) S. Farah, D.G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016) F. Rezgui, M. Swistek, J.M. Hiver, C. G’Sell, T. Sadoun, Deformation and damage upon stretching of degradable polymers (PLA and PCL). Polymer 46(18), 7370 (2005). https://doi.org/10.1016/j.polymer.2005.03.116 M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 90, 1731–1738 (2003) S.M. Mirkhalaf, M. Fagerström, The mechanical behavior of Polylactic acid (PLA) films: Fabrication, experiments and Modelling. Mech. Time-Depend. Mat. (2019). https://doi.org/10.1007/s11043-019-09429-w J.S. Bergstrom, D. Hayman, An overview of mechanical properties and material modeling of Polylactide (PLA) for medical applications. Ann. Biomed. Eng. 44(2), 330–340 (2016). https://doi.org/10.1007/s10439-015-1455-8 K. Billimoria, E.L. Heeley, N. Parsons, L. Figiel, An investigation into the crystalline morphology transitions in poly-L-lactic acid (PLLA) under uniaxial deformation in the solid-state regime. Eur. Polym. J. 101, 127–139 (2018) A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-Lòpez, A.L. Elìas, C.I. Chia, B. Wang, V.H. Crespi, F. Lòpez-Urìas, J.C. Charlier, H. Terrones, M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755–1–1755-8 (2013) G. Kister, G. Cassanas, M. Vert, B. Pauvert, A. Terol, Vibrational analysis of poly(L-lactic acid). J. Raman Spectros. 26(4), 307–311 (1995) G. Kister, G. Cassanas, M. Vert, Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39(2), 267–273 (1998) K.V. Herrera, A. Misiun, A. Vogt, Preparation, and characterization of poly (lactic acid) / poly (methyl methacrylate) tablets compressed for application in quantitative analysis by Raman microspectroscopy. J. Raman Spectrosc. 46, 273–279 (2015) J.P. Kalish, K. Aou, X. Yang, S. Ling Hsu, Spectroscopic and thermal analyses of α’ and α crystalline forms of poly(L-lactic acid). Polymer 52, 814–821 (2011) K. Wasanasuk, K. Tashiro, Crystal structure and disorder in poly(L-lactic acid) δ form (α’ form) and the phase transition mechanism to the ordered α form. Polymer 52, 6097–6109 (2011) G. Stoclet, R. Seguela, J.M. Lefebvre, C. Rochas, New insights on the strain-induced mesophase of poly(D,L-lactide): In situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 43, 7228–7237 (2010) G. Stoclet, R. Seguela, J.M. Lefebvre, S. Elkoun, C. Vanmansart, Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 43, 1488–1498 (2010). https://doi.org/10.1021/ma9024366 C. Zhou, H. Li, Y. Zhang, F. Xue, S. Huang, H. Wen, J. Li, J. de Claville Christiansen, D. Yu, Z. Wu, S. Jiang, Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature. Cryst. Eng. Comm. 17, 5651–5663 (2015) Q. Lan, Y. Li, H. Chi, Highly enhanced mesophase formation in glassy poly(L-lactide) at low temperatures by low-pressure CO2 that provides moderately increased molecular mobility. Macromolecules 49, 2262–2271 (2016) P. Pan, B. Zhu, T. Dong, K. Yazawa, T. Shimizu, M. Tansho, Y. Inoue, Conformational and microstructural characteristics of poly(L-lactide) during glass transition and physical aging. J. Chem. Phys. 129(8), 184902–1–184902-10 (2008) X.-R. Gao, Y. Li, H.-D. Huang, J.-Z. Xu, L. Xu, X. Ji, G.-J. Zhong, Z.M. L, Extensional stress-induced orientation and crystallization can regulate the balance of toughness and stiffness of polylactide films: Interplay of oriented amorphous chains and crystallites. Macromol 52, 5278–5288 (2019)