Effect of the exogenous application of abscisic acid (ABA) at fruit set and at veraison on cell ripeness of olives Olea europaea L. and the extractability of phenolic compounds in virgin olive oil
Tóm tắt
The effect of the exogenous application of abscisic acid (ABA) at the fruit set and veraison on the cell maturity of the olive Olea europaea L. and on the extractability of phenolic compounds (PC) in the virgin oil olive was studied. The ABA was sprayed on olive trees of the Moroccan Picholine variety at a concentration of 10−3 mg/l, some olive trees are treated at fruit set stage and other olive trees are treated at veraison stage. The effects of these treatments were evaluated by fruit yield and determination of the date of veraison and ripening period of the olives. The extractability of olive oil and diffusion of PC in the latter as well as the weakening of the parietal structures are also estimated. The application of ABA at fruit set causes a decrease in the production of fruit about 50% and precocity of ripening estimated 45 days. At this stage, comparing with the control in the same period, there was a significant accumulation of fat in olives, an increase in oil extractability and a significant improvement in the diffusion of PC in oils. The treatment of the olives by the ABA at veraison has no effect on yield. However, we observe physiological and biochemical changes to be identical during the treatment by ABA at veraison but smaller than that at fruit set.
Tài liệu tham khảo
Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet. 2011;45:41–59.
Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C. Fruit development and ripening. Annu Rev Plant Biol. 2013;64:219–41.
Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell. 2013;25:1960–78.
Gillaspy G, Ben-David H, Gruissem W. Fruits: a developmental perspective. Plant Cell. 1993;5:1439–51.
Nitsch LM, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, Mariani C, Vriezen WH. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Planta. 2009;229:1335–46.
Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008;177:60–76.
García-Martínez JL, Carbonell J. Fruit-set of unpollinated ovaries of Pisum sativum L. Influence of plant-growth regulators. Planta. 1980;147:451–6.
Aenor, Associación Española de Normalización y Certificación. Materias Grasas. Humedad y materias volatiles (Mètodo de la estufa de aire) (Norma UNE 55-020-73, Madrid, España); 1973.
Aenor, Associación Española de Normalización y Certificación. Cuerpos Grasos. Determinación del contenido en material grasa total de la aceituna. (Norma UNE 55030, Madrid, España); 1961.
Brenes M, Rejano L, Garcia P, Sanchez HA, Garrido A. Biochemical changes in phenolic compounds during Spanish-style green olive processing. J Agric Food Chem. 1995;43:2702–6.
Vázquez-Roncero A, Janer del Valle C, Janer del Valle ML. Determinación de polifenoles totales del aceite de oliva. Grases Aceites. 1973;22:350–5.
Catalano L, Franco I, De Nobili M, Leita L. Polyphenols in olive mill waste waters and their depuration plant effluents: a comparaison of the Folin-Ciocalteau and HPLC methods. Agrochimica. 1999;43:193–205.
Ribereau-Gayon P, Stonestreet E. Le dosage des anthocyanes dans le vin rouge. Bull Soc Chim. 1965;9:2649–52.
Saulnier L, Thibault JF. Extraction and characterization of pectic substances from pulp of grape berries. Carbohydr Polym. 1987;7:329–43.
Robertson GL. The fractional extraction and quantitative determination of pectic substances in grapes and musts. Am J Enol Vitic. 1979;30(3):182–6.
Jesús Tovar M, Paz Romero M, Girona Joan, José Motilva M. L-Phenylalamine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L. cv Arbequina) fruit grown under different irrigation regimes. J Sci Food Agric. 2002;82:892–8.
Somogyi M. Notes on sugar determination. J Biol Chem. 1952;195:19.
Baron A. Norme française homologuée de détermination des substances pectiques T2. I/MGS/CSM, 0314 et 0607700; 1984.
Greene Duane W, Schupp James R, Winzeler Edwin H. Effect of abscisic acid and benzyladenine on fruit set and fruit quality of apples. HortScience. 2011;46(4):604–9.
Greene Duane W. Influence of abscisic acid and benzyladenine on fruit set and fruit quality of ‘Bartlett’ pears. HortScience. 2012;47(11):1607–11.
Amrani Joutei K, Ouazzani Chahdi F, Saucier C, El Hassimi Sow M, Douya D, Glories Y. Influence de l’AIA et de l’ABA sur la maturité des raisins et sur la libération des tanins et des anthocyanes au cours de la macération. Alawamia 112. 2004; 1(4).
Rangel B, Platt KA, Thomson WW. Ultrastructural aspects of the cytoplasmic origin and accumulation of oil in olive fruit (Olea europaea). Physiol Plant. 1997;101:109–14.
Ranalli A, Malfatti A, Cabras P. Composition and quality of pressed virgin olive oils extracted with a new enzyme processing aid. Sensory and nutritive qualities of food. J Food Sci. 2001;66:592–603 (No. 2).
Mínguez-Mosquera Isabel M, Gallardo-Guerrero Lourdes, Roca María. Pectinesterase and polygalacturonase in changes of pectic matter in olives (cv. Hojiblanca) intended for milling. J Am Oil Chem Soc. 2002;79(1):93–9.
Amiot MJ, Fleuriet A, Macheix JJ. Importance and evolution of phenolic compounds in olive during growth and maturation. J Agric Food Chem. 1986;34:823–6.
Bianco AD, Muzzalupo I, Piperno A, Romeo G, Uccella N. Bioactive derivatives of oleuropein from olive fruits. J Agric Food Chem. 1999;47:3531–4.
Servili M, Selvaggini R, Esposto S, Taticchi A, Francesco Montedoro Gian, Morozzi Guido. Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspect of production that affect their occurence in the oil. J Chromatogr. 2004;1054:113–27.
Gómez-Rico A, Inarejos-Garcıá AM, Salvador MD, Fregapane G. Effect of malaxation conditions on phenol and volatile profiles in olive paste and the corresponding virgin olive oils (Olea europaea L. Cv. Cornicabra). J Agric Food Chem. 2009;57:3587–95.
Bianco A, Coccioli F, Guiso M, Marra C. The occurrence in olive oil of a new class of phenolic compounds: hydroxy-isochromans. Food Chem. 2001;77:405–11.
Hale CR, Coombe BG, Hawker JS. Effects of ethylene and 2-chloroethylphosphonic acid on the ripening of grapes. Plant Physiol. 1970;45(5):620–3.
Walton DC, Sondheimer E. Effects of abscissin II on phenylalanine ammonia-lyase activity in excised bean axes. Plant Physiol. 1968;43:467–9.
Hartmann HT, Heslop AJ, Wisler J. Chemical induction of fruit abscission in olive. Calif Agr. 1968;22(7):14–6.
Contreras A, Lagos TF. Effect of abscisic acid on the maturation of olive trees cv. Arbequina. IDESIA (Chile). 2012;30(1):35–43.
Ban T, Schiozaki S, Ogata T, Horiuchi S. Effect of abscisic acid and shading treatment on the levels of anthocyanin and resveratrol in skin of “Kyoho” grape berry. Acta Hort. 2000;514:83–9.
Zhang M, Leng P, Zhang G, Li X. Cloning and functional analysis of 9-cisepoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol. 2009;166:1241–52.
Peppi MC, Fidelibus MW, Dokoozlian N. Abscisic acid application timing and concentration affect firmness, pigmentation and color of ‘Flame Seedless’ grapes. HortScience. 2006;41:1440–5.
Peppi MC, Fidelibus MW, Dokoozlian NK. Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J Hort Sci Biotech. 2007;82:304–10.
Cantin CM, Fidelibus MW, Crisosto CH. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Posthavest Biol Tech. 2007;46:237–41.
Kondo S, Kawai M. Relationship between free and conjugated ABA levels in seeded and gibberellins-treated seedless, maturing ‘Pione’ grape berries. J Am Soc Hort Sci. 1998;12:3750–4.
Kondo S, Posuya P, Kanlayanarat S, Hirai N. Abscisic acid metabolism during development and maturation of rambutan fruit. J Hort Sci Biotechnol. 2001;76:23541.