Effect of pH on in vitro biocompatibility of orthodontic miniscrew implants

Progress in Orthodontics - Tập 14 - Trang 1-7 - 2013
Angela Galeotti1, Roberto Uomo1, Gianrico Spagnuolo2, Sergio Paduano3, Roberta Cimino2, Rosa Valletta2, Vincenzo D’Antò1,2
1Department of Pediatric Surgery, Bambino Gesù Children's Hospital, Rome, Italy
2Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples “Federico II”, Naples, Italy
3Department of Clinical and Experimental Medicine, University of Catanzaro ‘Magna Graecia’, Catanzaro, Italy

Tóm tắt

Although the clinical use of miniscrews has been investigated on a large scale, little is known about their biocompatibility. Since low pH can affect corrosion resistance, the aim of this study was to evaluate the cytotoxic effect of orthodontic miniscrews in different pH conditions. Four orthodontic miniscrews of stainless steel and grade IV and grade V titanium were immersed in a pH 7 and pH 4 saline solution for 1, 7, 14, 21, 28, and 84 days. Human osteogenic sarcoma cells (U2OS), permanent human keratinocytes (HaCat), and primary human gingival fibroblasts (HGF) were exposed to eluates, and the mitochondrial dehydrogenase activity was measured after 24 h to assess the cytoxicity. The results were analyzed using the Mann-Whitney U test (P < 0.05). When exposed to pH 7-conditioned eluates, the cell lines showed an even greater viability than untreated cells. On the contrary, the results revealed a statistically significant decrease in U2OS, HaCat, and HGF viability after exposure to eluates obtained at pH 4. Among the cell lines tested, HGF showed the most significant decrease of mitochondrial activity. Interestingly, grade V titanium miniscrews caused highest toxic effects when immersed at pH 4. The results suggested that at pH 7, all the miniscrews are biocompatible while the eluates obtained at pH 4 showed significant cytotoxicity response. Moreover, different cell lines can produce different responses to miniscrew eluates.

Tài liệu tham khảo

Kanomi R: Mini-implant for orthodontic anchorage. J Clin Orthod. 1997, 31: 763–67. Prabhu J, Cousley RR: Current products and practice: bone anchorage devices in orthodontics. J Orthod. 2006, 33: 288–307. Feldmann I, Bondemark L: Anchorage capacity of osseointegrated and conventional anchorage systems: a randomized controlled trial. Am J Orthod Dentofacial Orthop 2008, 133: 339. e19–28 e19–28 Eliades T, Bourauel C: Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofacial Orthop. 2005, 127: 403–12. D’Antò V, Uomo R, Paduano S, Laino A, Valletta R: Metal ion release from orthodontic appliances in vivo : a systematic review. Ortognatodonzia Italiana. 2007, 14: 235–41. Aamdal-Scheie A, Luan WM, Dahlén G, Fejerskov O: Plaque pH and microflora of dental plaque on sound and carious root surfaces. J Dent Res. 1996, 75: 1901–08. Humphrey SP, Williamson RT: A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001, 85: 162–69. Wataha JC, Lockwood PE, Khajotia SS, Turner R: Effect of pH on element release from dental casting alloys. J Prosthet Dent. 1998, 80: 691–98. Staffolani N, Damiani F, Lilli C, Guerra M, Staffolani NJ, Belcastro S, Locci P: Ion release from orthodontic appliances. J Dent. 1999, 27: 449–54. Belcastro S, Staffolani N, Guerra M: Effects of organic acids on corrosion of orthodontic appliances. Minerva Stomatol. 2001, 50: 15–20. Huang HH: Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. J Biomed Mater Res A. 2003, 66: 829–39. Huang HH, Wang C-C, Chiu S-M, Wang J-F, Liaw Y-C, Lee T-H, Chen F-L: Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003, 24: 3585–92. Ahn HS, Kim MJ, Seol HJ, Lee JH, Kim HI, Kwon YH: Effect of pH and temperature on orthodontic NiTi wires immersed in acidic fluoride solution. J Biomed Mater Res B Appl Biomater. 2006, 79: 7–15. Kao CT, Ding SJ, He H, Chou MY, Huang TH: Cytotoxicity of orthodontic wire corroded in fluoride solution in vitro . Angle Orthod. 2007, 77: 349–54. Kao CT, Ding SJ, Min Y, Hsu TC, Chou MY, Huang TH: The cytotoxicity of orthodontic metal bracket immersion media. Eur J Orthod. 2007, 29: 198–203. de Morais LS, Serra GG, Albuquerque Palermo EF, Rodrigues Andrade L, Müller CA, Meyer MA, Elias CN: Systemic levels of metallic ions released from orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2009, 135: 522–29. Geurtsen W: Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002, 13: 71–84.1. Faccioni F, Franceschetti P, Cerpelloni M, Fracasso ME: In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dentofacial Orthop. 2003, 124: 687–93. Bal W, Protas AM, Kasprzak KS: Genotoxicity of metal ions: chemical insights. Met Ions Life Sci. 2011, 8: 319–73. Jomova K, Valko M: Advances in metal-induced oxidative stress and human disease. Toxicology. 2011, 283: 65–87. Costa MT, Lenza MA, Gosch CS, Costa I, Ribeiro-Dias F: In vitro evaluation of corrosion and cytotoxicity of orthodontic brackets. J Dent Res. 2007, 86: 441–45. Mockers O, Deroze D, Camps J: Cytotoxicity of orthodontic bands, brackets and archwires in vitro . Dent Mater. 2002, 18: 311–17. El Medawar L, Rocher P, Hornez JC, Traisnel M, Breme J, Hildebrand HF: Electrochemical and cytocompatibility assessment of NiTiNOL memory shape alloy for orthodontic use. Biomol Eng. 2002, 19: 153–60. Oh KT, Kim KN: Ion release and cytotoxicity of stainless steel wires. Eur J Orthod. 2005, 27: 533–40. Papadopoulos MA, Tarawneh F: The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007, 103: e6-e15. ISO 10993–5 biological evaluation of medical devices: Part 5: tests for cytotoxicity: in vitro methods. Geneva: ISO; 1997. Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55–63. Mikulewicz M, Chojnacka K: Release of metal ions from orthodontic appliances by in vitro studies: a systematic literature review. Biol Trace Elem Res. 2011, 139: 241–56. D’Antò V, Eckhardt A, Hiller KA, Spagnuolo G, Valletta R, Ambrosio L, Schmalz G, Schweikl H: The influence of Ni(II) on surface antigen expression in murine macrophages. Biomaterials. 2009, 30: 1492–501. Schedle A, Ortengren U, Eidler N, Gabauer M, Hensten A: Do adverse effects of dental materials exist? What are the consequences, and how can they be diagnosed and treated? Clin Oral Implants Res. 2007,18(Suppl 3):232–56. Erratum in: Clin Oral Implants Res. 2008;19:326–8 Erratum in: Clin Oral Implants Res. 2008;19:326–8 Park HY, Shearer TR: In vitro release of nickel and chromium from simulated orthodontic appliances. Am J Orthod. 1983, 84: 156–59. Grimsdottir MR, Gjerdet NR, Hensten-Pettersen A: Composition and in vitro corrosion of orthodontic appliances. Am J Orthod Dentofacial Orthop. 1992, 101: 525–32. Kerosuo H, Moe G, Kleven E: In vitro release of nickel and chromium from different types of simulated orthodontic appliances. Angle Orthod. 1995, 65: 111–16. Kim H, Johnson JW: Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod. 1999, 69: 39–44. Gioka C, Bourauel C, Zinelis S, Eliades T, Silikas N, Eliades G: Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dent Mater. 2004, 20: 693–700. Eliades T, Pratsinis H, Kletsas D, Eliades G, Makou M: Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am J Orthod Dentofacial Orthop. 2004, 125: 24–9. Sarkar NK, Greener EH: In vitro corrosion resistance of new dental alloys. Biomater Med Devices Artif Organs. 1973, 1: 121–29. Sarkar NK, Marshall GW, Moser JB, Greener EH: In vivo and in vitro corrosion products of dental amalgam. J Dent Res. 1975, 54: 1031–38. Platt JA, et al.: Corrosion behavior of 2205 duplex stainless steel. Am J Orthod Dentofacial Orthop. 1997, 112: 69–79. D’Antò V, Spagnuolo G, Polito I, Paduano S, Ambrosio L, Valletta R: In vitro cytotoxicity of orthodontic primers. Prog Orthod. 2009, 10: 4–11. D’Antò V, Spagnuolo G, Schweikl H, Rengo S, Ambrosio L, Martina R, Valletta R: Effect of N-acetyl cysteine on orthodontic primers cytotoxicity. Dent Mater. 2011, 27: 180–86. Wataha JC, Hanks CT, Sun Z: Effect of cell line on in vitro metal ion cytotoxicity. Dent Mater. 1994, 10: 156–61. Wataha JC: Predicting clinical biological responses to dental materials. Dent Mater. 2012, 28: 23–40. Pizzoferrato A, Vespucci A, Ciapetti G, Stea S: Biocompatibility testing of prosthetic implant materials by cell cultures. Biomaterials. 1985, 6: 346–51. Berstein A, Bernauer I, Marx R, Geurtsen W: Human cell culture studies with dental metallic materials. Biomaterials. 1992, 13: 98–100. Sutow E: The corrosion behavior of stainless steel oral and maxillofacial implants. In In Vivo Aging of Dental Biomaterials. Edited by: Eliades G, Eliades T, Brantley WA, Watts DC. Chicago, USA: Quintessence; In press In press Brantley WA: Orthodontic wires. In Orthodontic Materials: Scientific and Clinical Aspects. Edited by: Brantley WA, Eliades T. Stuttgart, Germany: Thieme; 2000:78–100. Barry M, Kennedy D, Keating K, Schauperl Z: Design of dynamic test equipment for the testing of dental implants. Mater Des. 2005, 26: 209–16. Okazaki Y: Dental casting properties of Ti-15Zr-4Nb-4Ta alloy. Mater Trans. 2002, 43: 3134–41. Liu X, Chu PK, Ding C: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004, 47: 49–121. Jones FH: Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep. 2001, 42: 75–205. Shukla AK, Balasubramaniam R, Bhargava S: Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions. Intermetallics. 2005, 13: 631–37. Hodgson AWE, Mueller Y, Forster D, Virtanen S: Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochem Acta. 2002, 47: 1913–23. Nakagawa M, Matono Y, Matsuya S, Udoh K, Ishikawa K: The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials. 2005, 26: 2239–46.