Effect of maternal gestational weight gain on offspring DNA methylation: a follow-up to the ALSPAC cohort study

Springer Science and Business Media LLC - Tập 8 - Trang 1-5 - 2015
Jon Bohlin1, Bettina K Andreassen1,2, Bonnie R Joubert3, Maria C Magnus1, Michael C Wu4, Christine L Parr1, Siri E Håberg1, Per Magnus1, Sarah E Reese3, Camilla Stoltenberg1, Stephanie J London3, Wenche Nystad1
1Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
2Department of Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
3National Institute of Environmental Health Sciences, Research Triangle Park, USA
4Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA

Tóm tắt

Several epidemiologic studies indicate that maternal gestational weight gain (GWG) influences health outcomes in offspring. Any underlying mechanisms have, however, not been established. A recent study of 88 children based on the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort examined the methylation levels at 1,505 Cytosine-Guanine methylation (CpG) loci and found several to be significantly associated with maternal weight gain between weeks 0 and 18 of gestation. Since these results could not be replicated we wanted to examine associations between 0 and 18 week GWG and genome-wide methylation levels using the Infinium HumanMethylation450 BeadChip (450K) platform on a larger sample size, i.e. 729 newborns sampled from the Norwegian Mother and Child Cohort Study (MoBa). We found no CpG loci associated with 0–18 week GWG after adjusting for the set of covariates used in the ALSPAC study (i.e. child’s sex and maternal age) and for multiple testing (q > 0.9, both 1,505 and 473,731 tests). Hence, none of the CpG loci linked with the genes found significantly associated with 0–18 week GWG in the ALSPAC study were significant in our study. The inconsistency in the results with the ALSPAC study with regards to the 0–18 week GWG model may arise for several reasons: sampling from different populations, dissimilar methylome coverage, sample size and/or false positive findings.

Tài liệu tham khảo

Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK et al (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120(10):1425–1431 Engel SM, Joubert BR, Wu MC, Olshan AF, Haberg SE, Ueland PM et al (2014) Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort. Am J Epidemiol 179(7):834–842 Monte S, Valenti O, Giorgio E, Renda E, Hyseni E, Faraci M et al (2011) Maternal weight gain during pregnancy and neonatal birth weight: a review of the literature. J Prenat Med 5(2):27–30 Ludwig DS, Currie J (2010) The association between pregnancy weight gain and birthweight: a within-family comparison. Lancet 376(9745):984–990 Morales E, Groom A, Lawlor DA, Relton CL (2014) DNA methylation signatures in cord blood associated with maternal gestational weight gain: results from the ALSPAC cohort. BMC Res Notes 7:278 Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ et al (2011) Genomic inflation factors under polygenic inheritance. Eur J Hum Genet EJHG 19(7):807–812 Listgarten J, Kadie C, Schadt EE, Heckerman D (2010) Correction for hidden confounders in the genetic analysis of gene expression. Proc Natl Acad Sci USA 107(38):16465–16470 Chen W, Gao G, Nerella S, Hultman CM, Magnusson PK, Sullivan PF et al (2013) MethylPCA: a toolkit to control for confounders in methylome-wide association studies. BMC Bioinform 14:74 Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445 Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M et al (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics Off J DNA Methylation Soc 6(6):692–702 Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322 Liu J, Morgan M, Hutchison K, Calhoun VD (2010) A study of the influence of sex on genome wide methylation. PLoS One 5(4):e10028 Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15(2):R31 Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86 Wu MC, Joubert BR, Kuan PF, Haberg SE, Nystad W, Peddada SD et al (2014) A systematic assessment of normalization approaches for the Infinium 450K methylation platform. Epigenetics Off J DNA Methylation Soc 9(2):318–329 Stevens M, Cheng JB, Li D, Xie M, Hong C, Maire CL et al (2013) Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res 23(9):1541–1553 Magnus P, Irgens LM, Haug K, Nystad W, Skjaerven R, Stoltenberg C (2006) MoBa Study G: Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 35(5):1146–1150 Nilsen RM, Vollset SE, Gjessing HK, Skjaerven R, Melve KK, Schreuder P et al (2009) Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr Perinat Epidemiol 23(6):597–608 Ronningen KS, Paltiel L, Meltzer HM, Nordhagen R, Lie KK, Hovengen R et al (2006) The biobank of the Norwegian Mother and Child Cohort Study: a resource for the next 100 years. Eur J Epidemiol 21(8):619–625 Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23(10):1294–1296 Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al. (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30(10):1363–1369