Effect of magnetic-field orientation on dual-peak phenomenon of magnetoelectric coupling in Ni/PZT/Terfenol-D composites

AIP Advances - Tập 9 Số 4 - 2019
Longfei Niu1, Yang Shi2, Yuanwen Gao3
1Research Center of Laser Fusion, China Academy of Engineering Physics 1 , Mianyang 621900, PR China
2School of Mechano-Electronic Engineering, Xidian University 2 , Xi’an, Shanxi 710071, PR China
3Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University 3 , Lanzhou, Gansu 730000, PR China

Tóm tắt

Magnetoelectric (ME) effect in a Ni/PZT/Terfenol-D composite cantilever was tested under three different magnetic loading modes. The frequency-dependent ME effect and dual-peak phenomenon were observed in the experiment. The influence of orientations of magnetic fields on the dual-peak phenomenon of ME coupling was investigated. Magnetic field distribution inside the ME composite structure was simulated, which agrees well with experimental data. The experiment results indicate that ME coefficient versus bias magnetic field curve presents a novel dual-peak phenomenon near the resonant frequency, and the ME coefficient which depends upon the amplitude and orientation of magnetic field presents a nonlinear shift whether at the resonant frequency or not. In addition, the optimal angle corresponding to the largest ME coefficient for different bias fields were obtained. The proposed ME composites-based sensors can be used for detecting or harvesting magnetic signals of uncertain orientations and amplitudes in complex environments.

Từ khóa


Tài liệu tham khảo

2006, Nat, 442, 759, 10.1038/nature05023

2005, Sci, 309, 391, 10.1126/science.1113357

2010, Appl. Phys. Lett., 96, 123507, 10.1063/1.3360218

2007, J. Appl. Phys., 101, 124102, 10.1063/1.2748712

2011, Sens. Actuators A: Phys., 166, 102, 10.1016/j.sna.2010.12.026

2018, Compo. Struct., 185, 474, 10.1016/j.compstruct.2017.11.019

2017, Phys. Lett. A, 381, 1504, 10.1016/j.physleta.2017.02.029

2018, Phys. Lett. A, 382, 1124, 10.1016/j.physleta.2018.02.032

2005, Phys. Rev. B, 72, 012405, 10.1103/physrevb.72.012405

2010, Scripta Mater, 63, 589, 10.1016/j.scriptamat.2010.06.003

2017, Phys. Lett. A, 381, 1, 10.1016/j.physleta.2016.10.018

2014, IEEE Transactions on Magnetics, 50, 1, 10.1109/tmag.2014.2326193

2012, J. Appl. Phys., 112, 104101, 10.1063/1.4765724

2012, Appl. Phys. Lett., 101, 142904, 10.1063/1.4756919

2014, J. Alloys Comp., 613, 93, 10.1016/j.jallcom.2014.06.035

2014, Adv. Mater. Sci. Eng., 2014, 249526, 10.1155/2014/249526

2014, J. Appl. Phys., 116, 173910, 10.1063/1.4901069

2015, J. Appl. Phys., 118, 234104, 10.1063/1.4938113

2016, AIP Adv, 6, 065318, 10.1063/1.4954697

2010, Smart Mater. Struct., 19, 125004, 10.1088/0964-1726/19/12/125004

2007, Appl. Phys. Lett., 90, 182505, 10.1063/1.2736300

2015, J. Alloys Comp., 646, 351, 10.1016/j.jallcom.2015.05.229

2011

2011, J. Appl. Phys., 109, 094503, 10.1063/1.3581104

2008, J. Appl. Phys., 103, 031101, 10.1063/1.2836410