Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats
Tóm tắt
Từ khóa
Tài liệu tham khảo
Vig K. Taking stock: a century of orthodontics—has excellence been redefined as expediency? Orthod Craniofac Res. 2004;7:138–42.
Kim YD, Kim SS, Kim SJ, Kwon DW, Jeon ES, Son WS. Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats. Lasers Med Sci. 2010;25:25–31.
Zahra SE, Elkasi AA, Eldin MS, Vandevska-Radunovic V. The effect of low level laser therapy (LLLT) on bone remodelling after median diastema closure: a one year and half follow-up study. Orthod Waves. 2009;68:116–22.
Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha (v) beta (3) integrin in rats. The Eur J Orthod. 2010;32:131–9.
Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11:143–55.
Altan BA, Sokucu O, Ozkut MM, Inan S. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci. 2010;27:131–40.
Ueda Y, Shimizu N. Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg. 2003;21:271–7.
Aihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci. 2006;21:24–33.
Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofac Orthop. 1997;111:525–32.
Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low—level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 2006;9:38–43.
Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R. Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Optics. 2013;18:128001.
Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone. 1998;22:347–54.
Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26:282–91.
Yoshida T, Yamaguchi M, Utsunomiya T, Kato M, Arai Y, Kaneda T, et al. Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofac Res. 2009;12:289–98.
Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;23:27–33.
Maylia E, Nokes L. The use of ultrasonics in orthopaedics: a review. Technol Health Care. 1997;7:1–28.
Cook SD, Salkeld SL, Popich-Patron LS, Ryaby JP, Jones DG, Barrack RL. Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res. 2001;391:S231.
Leung KS, Lee WS, Liu PPL, Cheung WH. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol. 2004;30:389–95.
Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin. 2009;41:108–15.
Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16:671–80.
Raman M, Stephen P, Roopinder K, Vijay S, Mohit B. Low-intensity pulsed ultrasound: fracture healing. Indian J Orthop. 2009;43(2):132–40.
Heckman JD, MCCABE J, RNI JJ. By non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76:26–34.
Lirani-Galvao AP, Jorgetti V, Da Silva OL. Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats. Photomed Laser Therapy. 2006;24:735–40.
Oliveira P, Sperandio E, Fernandes KR, Pastor FAC, Nonaka KO, Renno A. Comparison of the effects of low-level laser therapy and low-intensity pulsed ultrasound on the process of bone repair in the rat tibia. Revista Brasileira de Fisioterapia. 2011;15:200–5.
El-Bialy T, Lam B, Aldaghreer S, Sloan A. The effect of low intensity pulsed ultrasound in a 3D ex-vivo orthodontic model. J Dent. 2011;39(10):693–9.
El-Bialy T, Hassan A, Albaghdadi T, Fouad HA, Maimani AR. Growth modification of the mandible with ultrasound in baboons: a preliminary report. Am J Orthod Dentofac Orthop. 2006;130:435. e7-35. e14.
El-Bialy TH, Zaki AE-M, Evans CA. Effect of ultrasound on rabbit mandibular incisor formation and eruption after mandibular osteodistraction. Am J Orthod Dentofac Orthop. 2003;124:427–34.
El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans. Am J Orthod Dentofac Orthop. 2004;126:186–93.
El-Bialy T, Janadas A, Albaghdadi T. Nonsurgical treatment of hemifacial microsomia by therapeutic ultrasound and hybrid functional appliance. Open Access J Clinical Trials. 2010;2:29–36.
Erdogan O, Esen E. Biological aspects and clinical importance of ultrasound therapy in bone healing. J Ultrasound Med. 2009;28:765–76.
Feres MFN, Alhadlaq A, El-Bialy T. Adjunctive techniques for enhancing mandibular growth in Class II malocclusion. Med Hypotheses. 2015;84(4):301–4.