Effect of ionic substitutions on the magnetic properties of strontium hexaferrite: A first principles study

AIP Advances - Tập 7 Số 11 - 2017
Vivek Dixit1,2, Seong‐Gon Kim1,2, Jihoon Park3, Yang‐Ki Hong4
1Center for Computational Sciences, Mississippi State University 1 , Mississippi State, MS 39762, USA and , Mississippi State, MS 39762, USA
2Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA and Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA
3Korea Institute of Materials Science 2 , Changwon, Gyeongnam 51508, Republic of Korea
4Department of Electrical and Computer Engineering and MINT Center, The University of Alabama 3 , Tuscaloosa, AL 35487, USA

Tóm tắt

We investigated the effect of substitution of various ions at the Fe sites on magnetic properties of strontium hexaferrite (SrFe12O19) using first principles method based on density functional theory. The site occupancies of substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate magnetic properties of substituted strontium hexaferrite. A total of 21 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12−xMxO19 with x = 0.5. In each case the site preference of the substituted atom and the magnetic properties were calculated. We found that Bi, Sb, Sn, and Sc can effectively increase the magnetization and P, Co, Al, Ga, and Ti can enhance the anisotropy field when substituted into strontium hexaferrite.

Từ khóa


Tài liệu tham khảo

2012, Journal of Alloys and Compounds, 537, 43, 10.1016/j.jallcom.2012.05.063

2012, Progress in Materials Science, 57, 1191, 10.1016/j.pmatsci.2012.04.001

2010, Journal of Alloys and Compounds, 492, 691, 10.1016/j.jallcom.2009.12.019

2011, Journal of Alloys and Compounds, 509, 5893, 10.1016/j.jallcom.2011.03.002

2012, Journal of Magnetism and Magnetic Materials, 324, 15, 10.1016/j.jmmm.2011.07.016

2016, Journal of Alloys and Compounds, 671, 245, 10.1016/j.jallcom.2016.02.071

1994, Journal of Applied Physics, 75, 6643, 10.1063/1.356881

1999, Journal of Applied Physics, 85, 5229, 10.1063/1.369952

1974, Physica Status Solidi (A), 23, 351, 10.1002/pssa.2210230202

1968, Il Nuovo Cimento B Series, 10, 467, 10.1007/bf02712001

2010, Journal of Alloys and Compounds, 489, 110, 10.1016/j.jallcom.2009.09.024

2014, Journal of Alloys and Compounds, 585, 465, 10.1016/j.jallcom.2013.09.174

2008, Journal of Magnetism and Magnetic Materials, 320, 881, 10.1016/j.jmmm.2007.09.005

1979, Ceramurgia International, 5, 3, 10.1016/0390-5519(79)90002-4

2008, Journal of Applied Physics, 103, 10.1063/1.2829905

1992, Journal of Materials Science Letters, 11, 893, 10.1007/bf00730499

2013, Journal of Alloys and Compounds, 546, 234, 10.1016/j.jallcom.2012.08.029

2015, Journal of Superconductivity and Novel Magnetism, 28, 1773, 10.1007/s10948-014-2920-6

2013, Ceramics International, 39, 5713, 10.1016/j.ceramint.2012.12.089

2014, Journal of Alloys and Compounds, 615, 875, 10.1016/j.jallcom.2014.07.035

2014, Journal of Magnetism and Magnetic Materials, 362, 110, 10.1016/j.jmmm.2014.03.038

2009, Journal of Magnetism and Magnetic Materials, 321, 4045, 10.1016/j.jmmm.2009.07.088

2004, Journal of Alloys and Compounds, 369, 170, 10.1016/j.jallcom.2003.09.097

2001, Journal of Magnetism and Magnetic Materials, 234, 233, 10.1016/s0304-8853(01)00366-3

2005, Journal of Alloys and Compounds, 403, 104, 10.1016/j.jallcom.2005.05.025

2002, IEEE Transactions on Magnetics, 38, 2928, 10.1109/tmag.2002.803071

2010, Journal of Applied Physics, 107, 09A734, 10.1063/1.3338988

2011, Journal of Magnetism and Magnetic Materials, 323, 1727, 10.1016/j.jmmm.2011.02.010

2013, Journal of Magnetism and Magnetic Materials, 348, 75, 10.1016/j.jmmm.2013.08.006

2003, Journal of Physics: Condensed Matter, 15, 6229, 10.1088/0953-8984/15/36/311

2014, Journal of Magnetism and Magnetic Materials, 355, 1, 10.1016/j.jmmm.2013.11.032

2005, Journal of Applied Physics, 97, 10F309, 10.1063/1.1855710

2005, The European Physical Journal B - Condensed Matter and Complex Systems, 43, 509, 10.1140/epjb/e2005-00084-8

2015, Journal of Applied Physics, 117, 243904, 10.1063/1.4922867

2015, Journal of Applied Physics, 118, 203908, 10.1063/1.4936368

1996, Phys. Rev. B, 54, 11169, 10.1103/physrevb.54.11169

1999, Phys. Rev. B, 59, 1758, 10.1103/physrevb.59.1758

1957, Proc. IEEE, 104B, 2555

1976, Phys. Rev. B, 13, 5188, 10.1103/physrevb.13.5188

1989, Phys. Rev. B, 40, 3616, 10.1103/physrevb.40.3616

1996, Phys. Rev. Lett., 77, 3865, 10.1103/physrevlett.77.3865

1998, Phys. Rev. B, 57, 1505, 10.1103/physrevb.57.1505

2014, Journal of Applied Physics, 115, 17A702, 10.1063/1.4860938

2006, Journal of Magnetism and Magnetic Materials, 304, e775, 10.1016/j.jmmm.2006.02.220

2005, Physica B: Condensed Matter, 362, 95, 10.1016/j.physb.2005.01.480

2003, IEEE Transactions on Magnetics, 39, 2884, 10.1109/tmag.2003.815736

1995, Journal of Magnetism and Magnetic Materials, 147, 421, 10.1016/0304-8853(95)00063-1

1999, Phys. Rev. B, 59, 15680, 10.1103/physrevb.59.15680

1990, Phys. Rev. B, 41, 11919, 10.1103/physrevb.41.11919

2013, Journal of Nanoparticle Research, 15, 1524, 10.1007/s11051-013-1524-6

1959, Ferrites

1949, Rev. Mod. Phys., 21, 541, 10.1103/revmodphys.21.541

2016, Ceramics International, 42, 8627, 10.1016/j.ceramint.2016.02.094

2007, Journal of Magnetism and Magnetic Materials, 312, 418, 10.1016/j.jmmm.2006.11.130