Effect of folic acid combined with docosahexaenoic acid intervention on mild cognitive impairment in elderly: a randomized double-blind, placebo-controlled trial
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367(9518):1262–1270. https://doi.org/10.1016/s0140-6736(06)68542-5
Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R (2008) Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol 63(4):494–506. https://doi.org/10.1002/ana.21326
Volkert D, Chourdakis M, Faxen-Irving G, Fruhwald T, Landi F, Suominen MH, Vandewoude M, Wirth R, Schneider SM (2015) ESPEN guidelines on nutrition in dementia. Clin Nutr 34(6):1052–1073. https://doi.org/10.1016/j.clnu.2015.09.004
Mann J, Trus well AS (2002) Essentials of human nutrition, 2nd edn. Oxford University Press, Oxford
Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LY, Gindler J, Hong SX, Correa A (1999) Prevention of neural-tube defects with folic acid in China. N Engl J Med 341(20):1485–1490. https://doi.org/10.1056/nejm199911113412001
McNulty B, McNulty H, Marshall B, Ward M, Molloy AM, Scott JM, Dornan J, Pentieva K (2013) Impact of continuing folic acid after the first trimester of pregnancy: findings of a randomized trial of Folic Acid Supplementation in the Second and Third Trimesters. Am J Clin Nutr 98(1):92–98. https://doi.org/10.3945/ajcn.112.057489
Yang B, Liu Y, Li Y, Fan S, Zhi X, Lu X, Wang D, Zheng Q, Wang Y, Wang Y, Sun G (2013) Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: findings from 15357 adults of Han nationality. PLoS ONE 8(3):e57917. https://doi.org/10.1371/journal.pone.0057917
Araujo JR, Martel F, Borges N, Araujo JM, Keating E (2015) Folates and aging: Role in mild cognitive impairment, dementia and depression. Ageing Res Rev 22:9–19. https://doi.org/10.1016/j.arr.2015.04.005
Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21(5):364–373. https://doi.org/10.1016/j.jnutbio.2009.11.003
Cardoso C, Afonso C, Bandarra NM (2016) Dietary DHA and health: cognitive function ageing. Nutr Res Rev 29(2):281–294. https://doi.org/10.1017/s0954422416000184
Ma F, Li Q, Zhou X, Zhao J, Song A, Li W, Liu H, Xu W, Huang G (2019) Effects of folic acid supplementation on cognitive function and Abeta-related biomarkers in mild cognitive impairment: a randomized controlled trial. Eur J Nutr 58(1):345–356. https://doi.org/10.1007/s00394-017-1598-5
Zhang YP, Lou Y, Hu J, Miao R, Ma F (2018) DHA supplementation improves cognitive function via enhancing Abeta-mediated autophagy in Chinese elderly with mild cognitive impairment: a randomised placebo-controlled trial. J Neurol Neurosurg Psychiatry 89(4):382–388. https://doi.org/10.1136/jnnp-2017-316176
Khot V, Kale A, Joshi A, Chavan-Gautam P, Joshi S (2014) Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids. Biomed Res Int 2014:613078. https://doi.org/10.1155/2014/613078
Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS ONE 6(3):e17706. https://doi.org/10.1371/journal.pone.0017706
Dawson SL, Bowe SJ, Crowe TC (2016) A combination of omega-3 fatty acids, folic acid and B-group vitamins is superior at lowering homocysteine than omega-3 alone: a meta-analysis. Nutr Res 36(6):499–508. https://doi.org/10.1016/j.nutres.2016.03.010
Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer's disease: current evidence and future directions. Alzheimers Dement 12(6):719–732. https://doi.org/10.1016/j.jalz.2016.02.010
Bettcher BM, Fitch R, Wynn MJ, Lalli MA, Elofson J, Jastrzab L, Mitic L, Miller ZA, Rabinovici GD, Miller BL, Kao AW, Kosik KS, Kramer JH (2016) MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer’s disease dementia phenotypes. Alzheimers Dement (Amst) 3:91–97. https://doi.org/10.1016/j.dadm.2016.05.004
Serini S, Bizzarro A, Piccioni E, Fasano E, Rossi C, Lauria A, Cittadini AR, Masullo C, Calviello G (2012) EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients. Curr Alzheimer Res 9(8):913–923
Ma F, Wu T, Zhao J, Song A, Liu H, Xu W, Huang G (2016) Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI. Sci Rep 6:37486. https://doi.org/10.1038/srep37486
Enderami A, Zarghami M, Darvishi-Khezri H (2018) The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review. Neurol Sci 39(10):1667–1675. https://doi.org/10.1007/s10072-018-3473-4
Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM (2016) Omega-3 polyunsaturated fatty acids and oxylipins in neuroinflammation and management of Alzheimer disease. Adv Nutr 7(5):905–916. https://doi.org/10.3945/an.116.012187
Ma F, Wu T, Zhao J, Han F, Marseglia A, Liu H, Huang G (2016) Effects of 6-month folic acid supplementation on cognitive function and blood biomarkers in mild cognitive impairment: a randomized controlled trial in China. J Gerontol A Biol Sci Med Sci 71(10):1376–1383. https://doi.org/10.1093/gerona/glv183
Bo Y, Zhang X, Wang Y, You J, Cui H, Zhu Y, Pang W, Liu W, Jiang Y, Lu Q (2017) The n-3 polyunsaturated fatty acids supplementation improved the cognitive function in the chinese elderly with mild cognitive impairment: a double-blind randomized controlled trial. Nutrients. https://doi.org/10.3390/nu9010054
Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3):183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x
Gong Y (2002) Revision of wechsler’s adult intelligence scale in China. Acta Psychologica Sinica 3:18
Gong YX, Dai XY (1984) The usage of the Chinese version of the Wechsler Adult Intelligence Scale (WAIS-RC)-short form. J Hunan Med Univ 9:393–400
Zhang YP, Miao R, Li Q, Wu T, Ma F (2017) Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: a 12-month randomized, double-blind. Placebo-Controlled Trial J Alzheimers Dis 55(2):497–507. https://doi.org/10.3233/jad-160439
Danthiir V, Hosking DE, Nettelbeck T, Vincent AD, Wilson C, O'Callaghan N, Calvaresi E, Clifton P, Wittert GA (2018) An 18-mo randomized, double-blind, placebo-controlled trial of DHA-rich fish oil to prevent age-related cognitive decline in cognitively normal older adults. Am J Clin Nutr 107(5):754–762. https://doi.org/10.1093/ajcn/nqx077
Canhada S, Castro K, Perry IS, Luft VC (2018) Omega-3 fatty acids' supplementation in Alzheimer's disease: a systematic review. Nutr Neurosci 21(8):529–538. https://doi.org/10.1080/1028415x.2017.1321813
Dayon L, Guiraud SP, Corthesy J, Da Silva L, Migliavacca E, Tautvydaite D, Oikonomidi A, Moullet B, Henry H, Metairon S, Marquis J, Descombes P, Collino S, Martin FJ, Montoliu I, Kussmann M, Wojcik J, Bowman GL, Popp J (2017) One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimers Res Ther 9(1):43. https://doi.org/10.1186/s13195-017-0270-x
Oulhaj A, Jerneren F, Refsum H, Smith AD, de Jager CA (2016) Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J Alzheimers Dis 50(2):547–557. https://doi.org/10.3233/jad-150777
Jerneren F, Cederholm T, Refsum H, Smith AD, Turner C, Palmblad J, Eriksdotter M, Hjorth E, Faxen-Irving G, Wahlund LO, Schultzberg M, Basun H, Freund-Levi Y (2019) Homocysteine status modifies the treatment effect of omega-3 fatty acids on cognition in a randomized clinical trial in mild to moderate Alzheimer's disease: the OmegAD study. J Alzheimers Dis 69(1):189–197. https://doi.org/10.3233/jad-181148
van Wijk N, Watkins CJ, Hageman RJ, Sijben JC, Kamphuis PG, Wurtman RJ, Broersen LM (2012) Combined dietary folate, vitamin B-12, and vitamin B-6 intake influences plasma docosahexaenoic acid concentration in rats. Nutr Metab (Lond) 9(1):49. https://doi.org/10.1186/1743-7075-9-49
Da Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F (2016) Insights on the pathophysiology of Alzheimer's disease: the crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 68:547–562. https://doi.org/10.1016/j.neubiorev.2016.06.014
Gezen-Ak D, Dursun E, Hanagasi H, Bilgic B, Lohman E, Araz OS, Atasoy IL, Alaylioglu M, Onal B, Gurvit H, Yilmazer S (2013) BDNF, TNFalpha, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer's disease or mild cognitive impairment. J Alzheimers Dis 37(1):185–195. https://doi.org/10.3233/jad-130497
Dursun E, Gezen-Ak D, Hanagasi H, Bilgic B, Lohmann E, Ertan S, Atasoy IL, Alaylioglu M, Araz OS, Onal B, Gunduz A, Apaydin H, Kiziltan G, Ulutin T, Gurvit H, Yilmazer S (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer's disease, mild cognitive impairment or Parkinson's disease. J Neuroimmunol 283:50–57. https://doi.org/10.1016/j.jneuroim.2015.04.014
Zhou Q, Zhang Z, Wang P, Zhang B, Chen C, Zhang C, Su Y (2019) EPA+DHA, but not ALA, improved lipids and inflammation status in hypercholesterolemic adults: a randomized, double-blind, placebo-controlled trial. Mol Nutr Food Res 63(10):e1801157. https://doi.org/10.1002/mnfr.201801157
Rodriguez-Cruz M, Cruz-Guzman ODR, Almeida-Becerril T, Solis-Serna AD, Atilano-Miguel S, Sanchez-Gonzalez JR, Barbosa-Cortes L, Ruiz-Cruz ED, Huicochea JC, Cardenas-Conejo A, Escobar-Cedillo RE, Yam-Ontiveros CA, Ricardez-Marcial EF (2018) Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: a double-blind, controlled randomized trial. Clin Nutr 37(6):1840–1851. https://doi.org/10.1016/j.clnu.2017.09.011
Stanhewicz AE, Kenney WL (2017) Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev 75(1):61–70. https://doi.org/10.1093/nutrit/nuw053
Zgheel F, Perrier S, Remila L, Houngue U, Mazzucotelli JP, Morel O, Auger C, Schini-Kerth VB (2019) EPA:DHA 6:1 is a superior omega-3 PUFAs formulation attenuating platelets-induced contractile responses in porcine coronary and human internal mammary artery by targeting the serotonin pathway via an increased endothelial formation of nitric oxide. Eur J Pharmacol 853:41–48. https://doi.org/10.1016/j.ejphar.2019.03.022
Parlak H, Ozkan A, Dilmac S, Tanriover G, Ozsoy O, Agar A (2018) Neuronal nitric oxide synthase phosphorylation induced by docosahexaenoic acid protects dopaminergic neurons in an experimental model of Parkinson's disease. Folia Histochem Cytobiol 56(1):27–37. https://doi.org/10.5603/FHC.a2018.0005
Philippu A (2016) Nitric oxide: a universal modulator of brain function. Curr Med Chem 23(24):2643–2652