Tác động của protein thủy phân enzym từ xương heo lên một số đặc tính sinh học và chức năng

Springer Science and Business Media LLC - Tập 58 - Trang 4626-4635 - 2021
Jordi Pagán1, Albert Ibarz1, Ricardo Benítez2
1Food Technology Department, Departament de Tecnologia D’Aliments, Universitat de Lleida, Lleida, Spain
2Grupo de Química de Productos Naturales (QPN), Departamento de Química, Universidad del Cauca, Popayán, Colombia

Tóm tắt

Cặn xương heo được coi là nguồn tiềm năng cho các hydrolysate từ protein với những ứng dụng có giá trị trong ngành công nghiệp thực phẩm. Nghiên cứu này liên quan đến quá trình thủy phân enzym của protein xương heo. Các điều kiện để chiết xuất hydrolysate protein đã được tối ưu hóa và phương trình thu được cho phép chiết xuất các mẫu với các mức độ thủy phân khác nhau (DH) nhằm nghiên cứu ảnh hưởng của các đặc tính sinh học của protein thủy phân in-vitro đến khả năng tiêu hóa, xác định hoạt tính ức chế của enzyme chuyển angiotensin và hoạt tính chống oxy hóa cũng như các tính chất chức năng của nó. Kết quả cho thấy khả năng nhũ hóa và độ ổn định nhũ hóa tăng lên tại các giá trị DH trung bình, sau đó các đặc tính này giảm khi DH tăng. Độ tiêu hóa in-vitro và hoạt tính enzyme chuyển angiotensin (ACE) của các hydrolysate cũng bị ảnh hưởng rõ rệt bởi DH. Thành phần amino acid của protein thủy phân cũng được xác định.

Từ khóa

#xương heo #protein thủy phân #enzym #đặc tính sinh học #đặc tính chức năng

Tài liệu tham khảo

Abdillahi SM, Maa BT, Kasetty G, Strömstedt AA, Baumgarten M, Tati R et al (2018) Collagen VI contains multiple host defense peptides with potent in vivo activity. J Immunol 201:1007–1020 Adler-Nissen J (1986) Enzymic hydrolysis of food proteins. Elsevier applied science publisher, London Aerssens J, Van Audekercke R, Geusens P, Schot LPC, Osman AA, Dequeker J (1993) Mechanical properties, bone mineral content and bone composition (collagen, osteocalcin, IGF-I) of the rat femur: influence of ovariectomy and nandrolone decanoate (anabolic steroid) treatment. Calcified Tissue Int 53:269–277 Ahmed J, Al-Ruwaih N, Mulla M, Rahman MH (2018) Effect of high-pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT-Food Sci Technol 91:191–197 Al-Ruwaih N, Ahmed J, Mulla M, Arfat YA (2019) High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT-Food Sci Technol 100:231–236 Joint FAO/WHO/UNU expert consultation on protein requirements (1981) Amino acid scoring patterns Box GEP, Hunter WG, Hunter S (2005) Empirical model building and response surfaces. Wiley, New York Buckley M (2016) Species identification of bovine, ovine and porcine type 1 collagen; comparing peptide mass fingerprinting and LC-based proteomics methods. Int J Mol Sci 17(4):445 Dong X-B, Li X, Zhang C-H, Wang JZ, Tang CH, Sun HM, Jia W, Li Y, Chen LL (2014) Development of a novel method for hot-pressure extraction of protein from chickenbone and the effect of enzymatic hydrolysis on the extracts. Food Chem 157:339–346 Gómez NA, Gómez LJ, Zapata JE (2019) Kinetic models to produce an antioxidant by enzymatic hydrolysis of bovine plasma protein using a high substrate concentration. Curr Enzym Inhib 15(2):144–153 Gestion Porcina G (2015) Informe del Sector Porcino. Universitat de Lleida i Departament d’Agricultura, Ramaderia i Pesca. Alimentació i Medi Natural (DAAM). 7:694–733 Izquierdo-González JJ, Amil-Ruiz F, Zazzu S, Sánchez-Lucas R, Fuentes-Almagro CA, Rodríguez-Ortega MJ (2019) Proteomic analysis of goat milk kefir: Profiling the fermentation-time dependent protein digestion and identification of potential peptides with biological activity. Food Chem 295:456–465 Jae-Young O, Eun-A K, Hyogeun L, Hyun-Soo K, Jung-Suck L, You-Jin J (2019) Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochem 80:164–170 Jia-Nan Y, Meng Z, Jun Z, Yue T, Jia-Run H, Yi-Nan D, Hui J, Wen-Gang J, Hai-Tao W, Bei-Wei Z (2019) Gel properties of protein hydrolysates from trypsin-treated male gonad of scallop (Patinopecten yessoensis). Food Hydrocoll 90:452–461 Katayama K, Mori T, Kawahara S, Miake K, Kodama Y, Sugiyama M, Kawamura Y, Nakayama T, Maruyama M, Muguruma M (2007) Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats. J Food Sci 72:702–706 Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18:31–38 Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40(7):517–528 Kong X, Qian ZH, H, (2007) Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chem 101(2):615–620 Lacou L, Léonil J, Gagnaire V (2016) Functional properties of peptides: from single peptide solutions to a mixture of peptides in food products. Food Hydrocoll 57:187–199 Li M, Xia S, Zhang Y, Li X (2018) Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. LWT-Food Sci Technol 98:358–365 Lopes-da-Silva JA, Monteiro SR (2019) Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chem 294:216–223 Ménard O, Bourlieu C, De Oliveira SC, Dellarosa N, Laghi L, Carrière F, Capozzi F, Dupont D, Deglaire A (2018) A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chem 240:338–345 Nakade K, Kamishima R, Inoue Y, Ahhmed A, Kawahara S, Nakayama T, Maruyama M, Numata M, Ohta K, Aoki T et al (2008) Identification of an antihypertensive peptide derived from chicken bone extract. Anim Sci J 79:710–715 Novo Nordisk (2001) Determination of neutrase using the Anson Hemoglobin Method. Analytical Method EB-SM-0348.01/01 Pagán J, Ibarz A, Falguera V, Benítez R (2013) Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. J Food Eng 119:655–659 Petrova I, Tolstorebrov I, Eikevik TM (2018) Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing. Int Aquat Res 10:223–241 Rout S, Banerjee R (2007) Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresour Technol 98(16):3159–3163 Saeid A, Labuda M, Chojnacka K, Góreki H (2014) Valorization of bones to liquid phosphorus fertilizer by microbial solubilization. Waste Biomass Valori 5:265–272 Simon M (2019) Loveday Food Proteins: technological, nutritional and nustainability nttributes of traditional and emerging proteins. Annu Rev Food Sci Technol 10(1):311–339 Witono Y, Taruna I, Windrati WS, Azkiyah L, Sari TN (2016) ‘Wader’ (Rasbora jacobsoni) Protein hydrolysates: production, biochemical and functional properties. Agric Sci Procedia 9:482–492 Zhang Y, Zhang Y, Liu X, Huang L, Chen Z, Cheng J (2017) Influence of hydrolysis behavior and microfluidisation on the functionality and structural properties of collagen hydrolysates. Food Chem 227:211–218