Effect of environmental enrichment and isolation on behavioral and histological indices following focal ischemia in old rats
Tóm tắt
Stroke is a disease of aging. In stroke patients, the enriched group that received stimulating physical, eating, socializing, and group activities resulted in higher activity levels including spending more time on upper limb, communal socializing, listening and iPad activities. While environmental enrichment has been shown to improve the behavioral outcome of stroke in young animals, the effect of an enriched environment on behavioral recuperation and histological markers of cellular proliferation, neuroinflammation, and neurogenesis in old subjects is not known. We used behavioral testing and immunohistochemistry to assess the effect of environment on post-stroke recovery of young and aged rats kept either in isolation or stimulating social, motor, and sensory environment (( +)Env). We provide evidence that post-stroke animals environmental enrichment ( +)Env had a significant positive effect on recovery on the rotating pole, the inclined plane, and the labyrinth test. Old age exerted a small but significant effect on lesion size, which was independent of the environment. Further, a smaller infarct volume positively correlated with better recovery of spatial learning based on positive reinforcement, working and reference memory of young, and to a lesser extent, old animals kept in ( +)Env. Histologically, isolation/impoverishment was associated with an increased number of proliferating inflammatory cells expressing ED1 cells in the peri-infarcted area of old but not young rats. Further, ( +)Env and young age were associated with an increased number of neuroepithelial cells expressing nestin/BrdU as well as beta III tubulin cells in the damaged brain area which correlated with an increased performance on the inclined plane and rotating pole. Finally, ( +)Env and an increased number of neurons expressing doublecortin/BrdU cells exerted a significant effect on performance for working memory and performance on the rotating pole in both age groups. A stimulating social, motor and sensory environment had a limited beneficial effect on behavioral recovery (working memory and rotating pole) after stroke in old rats by reducing neuroinflammation and increasing the number of neuronal precursors expressing doublecortin. Old age however, exerted a small but significant effect on lesion size, which was independent of the environment.