Effect of coherent noise on single-station direction of arrival estimation

Stewart Greenhalgh1, Bing Zhou2, M. J. Rutty3
1Department of Physics, University of Adelaide, Adelaide, South Australia, 5005, Australia
2Department of Physics, University of Adelaide, Adelaide, Australia
3Petrosys Pty Ltd, Kent Town, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ananat KS, Dowla FU (1997) Wavelet transform methods for phase identification in three-component seismograms. Bull Seismol Soc Am 87:1598–1612

Bataille K, Chiu JM (1991) Polarization analysis of high-frequency, three-component seismic data. Bull Seismol Soc Am 81:622–642

Born M, Wolf E (1975) Principles of optics. Pergamon, New York

Cichowicz AR, Green WE, van Zyl Brink A (1988) Coda polarization properties of high-frequency microseismic events. Bull Seismol Soc Am 78:1297–1318

Cho WH, Spencer TW (1992) Estimation of polarization and slowness in mixed wavefields. Geophysics 57:805–814

Claassen JP (2000) Robust bearing estimates from three component stations. Pure Applied Geophys 158:349–374

Flinn EA (1965) Signal analysis using rectilinearity and direction of particle motion. Proc IEEE 53:1874–1876

Gal’perin EI (1983) The polarization method of seismic exploration. Reidel, Amsterdam

Gething PJD (1991) Radio direction finding and super-resolution, 2nd edn. Peregrinus, Stevenage, UK

Greenhalgh SA, Mason IM, Lucas E, Pant DR, Eames RT (1992) Controlled direction reception filtering of P- and S-waves in tau-p space. Geophys J Int 100:221–234

Greenhalgh SA, Mason IM, Zhou B (2005) An analytical treatment of single station triaxial seismic direction finding. J Geophys Eng 2:8–15

Harris DB (1990) Comparison of the directional estimation performance of high-frequency seismic arrays and three-component stations. Bull Seismol Soc Am 80:1951–1968

Hearn S, Hendrick N (1998) A review of single-station time-domain polarization analysis techniques. J Seism Explor 8:181–202

Jackson GM, Mason IM, Greenhalgh SA (1991) Principal component transforms of triaxial recordings by singular value decomposition. Geophysics 56:528–533

Jackson GM, Mason IM, Greenhalgh SA (1999) Single station triaxial seismic direction finding. In: Kirlin L, Done W (eds) Covariance analysis in geophysics. Society Exploration Geophysics, Tulsa, OK, pp 275–290

Jarpe S, Dowla F (1991) Performance of high-frequency three-component stations for azimuth estimation from regional seismic phases. Bull Seismol Soc Am 81:987–999

Jurkevics A (1988) Polarization analysis of three-component array data. Bull Seismol Soc Am 78:1725–1743

Kanasewich E (1981) Time sequence analysis in geophysics. University of Alberta Press, Alberta, Canada

Knowlton KB, Spencer TW (1996) Polarization measurement uncertainty on three-component VSPs. Geophysics 61:594–599

Lilly JM, Park J (1995) Multiwavelet spectral and polarization analysis of seismic records. Geophys J Int 122:1001–1021

Magotra NN, Ahmed E Chael E (1987) Seismic event detection and source location using single-station (three-component) data. Bull Seismol Soc Am 77:958–971

Montalbetti JF, Kanasewich ER (1970) Enhancement of teleseismic body phases with polarization filter. Geophys J R Astron Soc 21:119–129

Perelberg AI, Hornbostel SC (1994) Applications of seismic polarization analysis. Geophysics 59:119–130

Richwalshi S, Roy-Chowdury K, Mondt JC (2001) Multi-component wavefield separation applied to high resolution surface seismic data. J Appl Geophys 46:101–114

Roberts RG, Christofferson A, Cassidy F (1989) Real-time event detection, phase identification and source location estimates using single station three-component seismic data. Geophys J Int 97:471–480

Rutty MJ, Greenhalgh SA (1993) The correlation of seismic events on multicomponent data in the presence of coherent noise. Geophys J Int 113:343–358

Rutty MJ, Greenhalgh SA (1999) Correlation using triaxial data from multiple stations in the presence of coherent noise. In: Kirlin L, Done W (eds) Covariance analysis in geophysical data processing. Society of Exploration Geophysicists, Tulsa, pp 291–322

Ruud BO, Husebye ES, Ingate SF, Christoffersson A (1988) Event location at any distance using seismic data from a single, three-component station. Bull Seismol Soc Am 78:308–325

Suteau-Hensen A (1990) Estimating azimuth and slowness from three-component and array stations. Bull Seismol Soc Am 80:1987–1998

Vidale JE (1986) Complex polarization analysis of particle motion. Bull Seismol Soc Am 76:1393–1405

Wagner GS (1996) Resolving diversely polarized superimposed signals in three component seismic array data. Geophys Res Lett 23:1837–1840

Wagner GS, Owens TJ (1991) Broadband eigen-analysis for three-component seismic array data. IEEE Trans Signal Proc 43(7):1738–1741

Walck MC, Chael EP (1991) Optimal backazimuth estimation for three-component recordings of regional seismic events. Bull Seismol Soc Am 81:643–666