Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

Journal of Applied Physics - Tập 115 Số 4 - 2014
Ishpal Rawal1, Amarjeet Kaur1
1Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

Tóm tắt

The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ∼52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level.

Từ khóa


Tài liệu tham khảo

2007, Prog. Photovoltaics, 15, 677, 10.1002/pip.791

2011, J. Appl. Phys., 110, 044509, 10.1063/1.3626464

2004, Chem. Mater., 16, 4556, 10.1021/cm049473l

2002, J. Electrochem. Soc., 149, A1058, 10.1149/1.1491235

2006, Electrochem. Commun., 8, 937, 10.1016/j.elecom.2006.03.035

2005, J. Power Sources, 140, 162, 10.1016/j.jpowsour.2004.08.040

2007, Rare Met., 26, 591, 10.1016/S1001-0521(08)60012-1

2012, Synth. Met., 162, 1471, 10.1016/j.synthmet.2012.05.012

2013, J. Appl. Phys., 113, 094504, 10.1063/1.4793994

2013, J. Nanopart. Res., 15, 1637, 10.1007/s11051-013-1637-y

2013, Int. Nano Lett., 3, 52, 10.1186/2228-5326-3-52

1984, Phys. Rev. B, 30, 1023, 10.1103/PhysRevB.30.1023

1997, J. Appl. Phys., 82, 4362, 10.1063/1.366246

1992, J. Appl. Phys., 72, 4677, 10.1063/1.352073

2010, Appl. Phys. Lett., 96, 182904, 10.1063/1.3425671

1993, J. Phys.: Condens. Matter, 5, 1313, 10.1088/0953-8984/5/9/015

2012, J. Phys.: Condens. Matter, 24, 245602, 10.1088/0953-8984/24/24/245602

2011, J. Non-Crystall. Solids, 357, 1741, 10.1016/j.jnoncrysol.2010.11.119

2009, J. Appl. Phys., 106, 073715, 10.1063/1.3233915

2001, Appl. Biochem. Biotechnol., 96, 119, 10.1385/ABAB:96:1-3:119

2003, Curr. Appl. Phys., 3, 235, 10.1016/S1567-1739(02)00208-0

1979, Electronic Processes in Non-Crystalline Materials, 2nd ed.

2013, Appl. Phys. Lett., 102, 083304, 10.1063/1.4793399

2008, Open Macromol. J., 2, 74, 10.2174/1874343900802010074

2006, Composites: Part A, 37, 1545, 10.1016/j.compositesa.2005.11.004

2010, J. Appl. Phys., 107, 103719, 10.1063/1.3374628

2011, J. Mater. Environ. Sci., 2, 281

2008, Nano Lett., 8, 4653, 10.1021/nl800940e

2011, J. Phys.: Condens. Matter, 23, 265303, 10.1088/0953-8984/23/26/265303

2008, J. Appl. Polym. Sci., 110, 1324, 10.1002/app.28478

2003, Synth. Met., 138, 447, 10.1016/S0379-6779(02)00498-8

2003, Polymer, 44, 1353, 10.1016/S0032-3861(02)00906-0

2008, J. Met. Mater. Mineral., 18, 27

2012, Mater. Res. Bull., 47, 2095, 10.1016/j.materresbull.2012.03.040

1969, Philos. Mag., 19, 835, 10.1080/14786436908216338

1996, J. Appl. Phys., 79, 1476, 10.1063/1.360987

1993, Phys. Status Solidi B, 175, 15, 10.1002/pssb.2221750102

2000, Phys. Rev. B, 62, 7934, 10.1103/PhysRevB.62.7934

1998, Phys. Rev. Lett., 81, 4472, 10.1103/PhysRevLett.81.4472

2000, Phys. Rev. Lett., 84, 721, 10.1103/PhysRevLett.84.721

1998, Phys. Rev. B, 57, 12964, 10.1103/PhysRevB.57.12964

2013, Rom. J. Phys., 58, 354

1959, Ann. Phys., 8, 343, 10.1016/0003-4916(59)90003-X