Effect of a polyphenol molecular size on the gluten proteins – polyphenols interactions studied with FT-Raman spectroscopy
Tóm tắt
Changes observed in the structure of gluten network as a results of dough supplementation with polyphenols may depend on the number and type of functional groups at the aromatic ring, antioxidant activity and size of the polyphenol molecule. The present studies show effect of polyphenols differing in the molecular size (gallic, ellagic and tannic acids) on the structure of gluten network studied with FT- Raman spectroscopy. The model dough was supplemented with the polyphenols in the amount of 0.05%, 0.1% and 0.2%. Farinographic studies showed that only gallic and ellagic acids led to dough breakdown, whereas tannic acid (the biggest molecule) stabilized the gluten network. Spectroscopic results indicate formation of covalent or hydrogen bonds between protein SH groups and polyphenol OH groups. Moreover, it was observed a strong negative band in all spectra that can be assigned to α-helices. It suggests that structural changes can concern mainly gliadins. When it comes to aromatic amino acids, the pattern of tyrosine hydrogen bonding was not affected by the polyphenols, whereas microenvironment of tryptophan changed considerably to more hydrophobic. It may indicate folding of polypeptide chains and development of more compact and ordered gluten network. The results indicated that disulphide bridges can be broken during the dough mixing and phenolic molecules formed bonds with SH groups of cysteine. This confirms inclusion of the polyphenols into the gluten network.
Tài liệu tham khảo
K. Dewettinck, F. Van Bockstaele, B. Kühne, D. Van de Walle, T.M. Courtens, X. Gellynck, J. Cereal Sci. 48, 243–257 (2008)
A. Nawrocka, M. Szymańska-Chargot, A. Miś, A.A. Ptaszyńska, R. Kowalski, P. Waśko, W.I. Gruszecki, W.I. J. Raman Spectrosc 46, 309–316 (2015)
A. Miś, A. Nawrocka, D. Dziki, Food Bioprocess. Technol. 10, 1031–1041 (2017)
A. Nawrocka, M. Szymańska-Chargot, A. Miś, A.Z. Wilczewska, K.H. Markiewicz, J. Agric. Food Chem. 64, 2094–2104 (2016)
J.E. Bock, S. Damodaran, Food Hydrocoll. 31, 146–155 (2013)
W. Rumińska, K.H. Markiewicz, A.Z. Wilczewska, A. Nawrocka, Food Chem. 358, 129882 (2021)
M. Krekora, A. Miś, A. Nawrocka, J. Cereal Sci. 99, 103203 (2021)
A.L. Girard, S.R. Bean, M. Tilley, S.L. Adrianos, J.M. Awika, Food Chem. 245, 1154–1162 (2018)
Q. Wang, Y. Li, F. Sun, X. Li, P. Wang, J. Sun, …G. He, Food Res. Int. 69, 64–71 (2015)
K. Okada, Y. Negishi, S. Nagao, Cereal Chem. 64, 428–434 (1987)
M. Krekora, M. Szymańska-Chargot, Z. Niewiadomski, A. Miś, A. Nawrocka, Food Hydrocoll. 107, 105935 (2020)
R. Arimboor, C. Arumughan, J. Food Sci. 76, 130–137 (2011)
S. Tozzi, N. Zanna, P. Taddei, Food Chem. 141, 3586–3597 (2013)
P. Taddei, N. Zanna, S. Tozzi, J. Raman Spectrosc. 44, 1435–1439 (2013)
J. Du, M. Dang, I. Khalifa, X. Du, Y. Xu, C. Li, Food Res. Inter 137, 109536 (2020)
G.M. Jackson, R.C. Hoseney, J. Cereal Sci. 4, 87–95 (1986)
T. Ozdal, E. Capanoglu, F. Altay, Food Res. Int. 51(2), 954–970 (2013)
T. Beveridge, S.J. Toma, S. Nakai, J. Food Sci. 39, 49–51 (1974)
A. Miś, M. Krekora, Z. Niewiadomski, D. Dziki, A. Nawrocka, J. Cereal Sci. 95, 103035 (2020)
M.E. Cuvelier, H. Richard, C. Berset, Biosci. Biotechnol. Biochem. 56, 324–325 (1992)
L. Zhang, L. Cheng, L. Jiang, Y. Wang, G. Yang, G. He, J. Sci. Food Agric. 90, 2462–2468 (2010)
F. Secundo, N. Guerrieri, J. Agric. Food Chem. 53, 1757–1764 (2005)
P. Juszczyk, A.S. Kołodziejczyk, Z. Grzonka, J. Pept. Sci. 15, 23–25 (2009)
N. Wellner, P.S. Belton, A.S. Tatham, Biochem. J. 319, 741 (1996)
A. Nawrocka, M. Szymańska-Chargot, A. Miś, A.Z. Wilczewska, K.H. Markiewicz, Food Hydrocoll. 69, 410–421 (2017)
M. Nawrocka, A. Szymańska-Chargot, A.Z. Miś, K.H. Wilczewska, Markiewicz, Food Chem. 231, 51–60 (2017)
R. Wellner, E.N.C. Mills, G. Brownsey, R.H. Wilson, N. Brown, J. Freeman, N.G. Halford, P.R. Shewry, P.S. Belton, Biomacromolecules 6, 255–261 (2005)
Y. Song, L. Li, Q. Zheng, J. Agric. Food Chem. 57, 2295–2301 (2009)
C. Mangavel, J. Barbot, Y. Popineau, J. Gueguen, J. Agric. Food Chem. 49, 867–872 (2001)
L. Huang, X. Zhang, H. Zhang, J. Wang, LWT 91, 55–62 (2018)
H. Sugeta, Spectroc. Acta, Part A 31, 1729–1737 (1975)
A. Nawrocka, M. Krekora, Z. Niewiadomski, M. Szymańska-Chargot, A. Krawęcka, A. Sobota, A. Miś, LWT 121, 108959 (2020)
E.G. Ferrer, A.V. Gomez, M.C. Anon, M.C. Puppo, Spectroc. Acta 79, 278–281 (2011)
Q. Wang, Y. Tang, Y. Yang, L. Lei, J. Zhao, Y. Zhang, L. Li, Q. Wang, J. Ming, J. Sci. Food Agric. 101, 2511–2518 (2021)
A. Girard, M. Castell-Perez, S. Bean, S. Adrianos, J. Awika, J. Agric. Food Chem. 64, 7348–7356 (2016)
A.M. Herrero, P. Carmona, S. Cofrades, F. Jimenez-Colmenero, Food Res. Int. 41, 765–772 (2008)
K. Kłosok, R. Welc, E. Fornal, A. Nawrocka, Molecules 26(2), 508 (2021)
A.V. Gómez, E.G. Ferrer, M.C. Añón, M.C. Puppo, J. Mol. Struc 1033, 51–58 (2013)
N. Linlaud, E. Ferrer, M.C. Puppo, C. Ferrero, J. Agric. Food Chem. 59, 713–719 (2011)
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3nd edn. (Springer, New York, USA, 2006), pp. 529–575