Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-Based Ultra High Temperature Ceramic Composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Upadhya, 1997, Materials for ultra high temperature structural applications, Am. Ceram. Bull., 72, 51
Opeka, 2004, Oxidation-based materials selection for 2000 °C+ hypersonic aerosurfaces: Theoretical considerations and historical experiences, J. Mater. Sci., 39, 5887, 10.1023/B:JMSC.0000041686.21788.77
Opeka, 1999, Mechanical, thermal, and oxidation properties of hafnium and zirconium compounds, J. Eur. Ceram. Soc., 19, 2405, 10.1016/S0955-2219(99)00129-6
Monteverde, 2007, Ultra high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd., 428, 197, 10.1016/j.jallcom.2006.01.107
Monteverde, 2005, Progress in the fabrication of ultra high-temperature ceramics: “In situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite, Compd. Sci. Technol., 65, 1869, 10.1016/j.compscitech.2005.04.003
Loehman, R., Corral, E., Dumm, H.P., Kotula, P., and Tandon, R. Available online: http://prod.sandia.gov/techlib/access-control.cgi/2006/062925.pdf.
Tripp, 1973, Effect of an SiC addition on the Oxidation of ZrB2, Ceram. Bull., 52, 612
Gasch, 2004, Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics, J. Mater. Sci., 39, 5925, 10.1023/B:JMSC.0000041689.90456.af
Monteverde, 2007, Stability of ultra high temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions, J. Eur. Ceram. Soc., 27, 4797, 10.1016/j.jeurceramsoc.2007.02.201
Monteverde, 2010, Plasma Wind tunnel testing of ultra high temperature ZrB2–SiC composites under hypersonic re-entry conditions, J. Eur. Ceram. Soc., 30, 2313, 10.1016/j.jeurceramsoc.2010.01.029
Monteverde, 2011, Dynamic oxidation of ultra high temperature ZrB2–SiC under high enthalpy supersonic flows, Corros. Sci., 53, 922, 10.1016/j.corsci.2010.11.018
Marschall, 2009, Oxidation of ZrB2–SiC ultrahigh-temperature ceramic composites in dissociated air, J. Thermophys. Heat Transf., 23, 267, 10.2514/1.39970
Zhang, 2008, Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions, Compos. Sci. Technol., 68, 1718, 10.1016/j.compscitech.2008.02.009
Han, 2007, Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C, Scripta Mater., 57, 825, 10.1016/j.scriptamat.2007.07.009
Zhang, 2008, Structure evolution of ZrB2–SiC during the oxidation in air, J. Mater. Res., 23, 1961, 10.1557/JMR.2008.0251
Han, 2008, High-temperature oxidation at 1900 °C of ZrB2–xSiC ultra high temperature ceramic composites, J. Am. Ceram. Soc., 91, 3328, 10.1111/j.1551-2916.2008.02660.x
Marschall, 2012, Temperature jump phenomenon during plasmatron testing of ZrB2–SiC ultrahigh-temperature ceramics, J. Thermophys. Heat Transf., 26, 559, 10.2514/1.T3798
Han, 2008, Oxidation resistant ZrB2–SiC composites at 2200 °C., Compos. Sci. Technol., 68, 799, 10.1016/j.compscitech.2007.08.017
Hu, 2009, Oxidation mechanism and resistance of ZrB2–SiC composites, Corros. Sci., 51, 2724, 10.1016/j.corsci.2009.07.005
Rakich, J.V., Stewart, D.A., and Lanfranco, M.J. (1982). Results of a Flight Experiment on the Catalytic Efficiency of the Space Shuttle Heat Shield; AIAA Paper 82–0944, AIAA.
Scott, 1985, Effects of nonequilibrium and wall catalysis on shuttle heat transfer, J. Spacecr. Rocket., 41, 489, 10.2514/3.25059
Marschall, 2004, Catalytic atom recombination on ZrB2/SiC and HfB2/SiC ultrahigh-temperature ceramic composites, J. Spacecraft Rocket., 41, 576, 10.2514/1.2879
Balat, M., Badie, J.M., Cacciatore, M., and Rutigliano, M. (2002, January 26–29). Catalycity of silica surfaces at high temperature: comparison between experimental recombination coefficient and molecular dynamics simulation. Proceeding of 4th European Workshop “Hot Structures and Thermal Protection Systems for Space Vehicles”, Palermo, Italy.
Alfano, 2009, Emissivity and catalycity measurements on SiC-coated carbon fibre reinforced silicon carbide composite, J. Eur. Ceram. Soc., 29, 2045, 10.1016/j.jeurceramsoc.2008.12.011
Balat, 1999, Ceramics catalysis evaluation at high temperature using both thermal and chemical approaches, J. Spacecraft Rocket., 36, 273, 10.2514/2.3442
Bedra, 2005, Comparative modeling study and experimental results of atomic oxygen recombination on silica-based surfaces at high-temperature, Aerosp. Sci. Technol., 9, 318, 10.1016/j.ast.2005.01.011
Passarelli, 2010, Recombination of atomic oxygen on sintered zirconia at high temperature in non-equilibrium air plasma, Mater. Chem. Phys., 123, 40, 10.1016/j.matchemphys.2010.03.059
Li, 2009, Ablation resistance of ZrB2–SiC–AlN ceramic composites, J. Alloys Compd., 479, 299, 10.1016/j.jallcom.2008.12.036