Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar

International Journal of Concrete Structures and Materials - Tập 9 Số 2 - Trang 207-217 - 2015
L.P. Singh1, Anjali Goel2, Sriman Kumar Bhattachharyya1, Saurabh Ahalawat1, U. Sharma1, Geetika Mishra1
1CSIR-Central Building Research Institute, Roorkee, India
2Gurukul Kangri University, Haridwar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acker P. (2001). Micromechanical analysis of creep and shrinkage mechanisms. In F. J. Ulm, Z. P. Bazant, F. H. Wittmann (Eds.), Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, 6th international conference (pp. 15–26) Amsterdam, Netherlands: CONCREEP@MIT Elsevier.

Alonso, C., & Fernandez, L. (2004). Dehydration and rehydration processes of cement paste exposed to high temperature environments. Journal of Materials Science, 39(9), 3015–3024.

Baykal, M. (2000). Implementation of durability models for portland cement concrete into performance-based specifications. Austin, TX: University of Texas at Austin.

Bjornström, J., Martinelli, A., Matic, A., Borjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters, 392(1–3), 242–248.

Coenen, S., & Kruif, C. G. (1988). Synthesis and growth of colloidal silica particles. Journal of Colloid and Interface Science, 124(1), 104–110.

Flores, I., Sobolev K., Torres-Martinez L. M., Cuellar E. L., Valdez P. L., Zarazua E. (2010). Performances of cement systems with nano-SiO2 particles produced by using the sol-gel method. In Transportation Research Record: Journal of the Transportation Research Board, No. 2141 (pp. 10–14). Washington, DC: Transportation Research Board of the National Academies.

Gabrovsek, R., Vuk, T., & Kaucic, V. (2006). Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chimica Slovenica, 53(2), 159–165.

Gaitero, J. J., Campillo, I., & Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 38(8–9), 1112–1118.

Gaitero, J. J., Zhu, W., & Campillo, I. (2009). Multi-scale study of calcium leaching in cement pastes with silica nanoparticles. Nanotechnology in construction 3, Berlin (pp. 193–198). Heidelberg, Germany: Springer.

Gallucci, E., Zhang, X., & Scrivener, K. L. (2013). Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cement and Concrete Research, 53, 185–195.

He, X., & Shi, X. (2008). Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transportation Research Record: Journal of the Transportation Research Board, 2070, 13–21.

Hou, P., Cheng, X., Qian, J., & Shah, S. P. (2014). Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nano-SiO2 and its precursor. Construction and Building Materials, 53, 66–73.

Jain, J., & Neithalath, N. (2009). Analysis of calcium leaching behavior of plain and modified cement pastes in pure water. Cement and Concrete Composite, 31(3), 176–185.

Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement and Concrete Research, 35(10), 1943–1947.

Jo, B., Kim, C., & Lim, J. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21(6), 1351–1355.

Kong, D., Su, Y., Xi, D., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562.

Kontoleontos, F., Tsakiridis, P. E., Marinos, A., Kaloidas, V., & Katsioti, M. (2012). Influence of colloidal nano-silica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and Building Materials, 35, 347–360.

Lam, L., Wong, Y. L., & Poon, C. S. (2000). Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cement and Concrete Research, 30(5), 747–756.

Lin, W. T., Huang, R., Chang, J. J., & Lee, C. L. (2009). Effect of silica fume on the permeability of fiber cement composites. Journal of the Chinese Institute of Engineers, 32(4), 531–541.

Neville, A. M. (1981). Properties of concrete (3rd ed., pp. 257–279). London, UK: ELBS with Longman.

Olsona, R. A., & Jennings, H. M. (2001). Estimation of C-S-H content in a blended cement paste using water adsorption. Cement and Concrete Research, 31(3), 351–356.

Pichler, B., Hellmich, C., Eberhardsteiner, J., Wasserbauer, J., Termkhajornkit, P., Barbarulo, R., & Chanvillard, G. (2013). Effect of gel–space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach. Cement and Concrete Research, 45, 55–68.

Powers, T. C., & Brownyard, T. L. (1948). Studies of the physical properties of hardened Portland cement paste. Research Laboratories of the Portland Cement Association Bulletin, 22, 101–992.

Quercia, G., Spiesz, P., Hüsken, G., & Brouwers, H. J. H. (2014). SCC modification by use of amorphous nano-silica. Cement & Concrete Composites, 45, 69–81.

Ramachandran, V. S., Paroli, R. M., Beaudoin, J. J., & Delgado, A. H. (Eds.). (2003). Handbook of thermal analysis of construction materials. Norwich: Noyes Publications.

Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete—A review. Construction and Building Materials, 24(11), 2060–2071.

Savas B. Z. (2000). Effects of microstructure on durability of concrete, Ph.D. thesis. Raleigh: North Carolina State University.

Shi, X., Xie, N., Fortune, K., & Gong, J. (2012). Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials, 30, 125–138.

Singh, L. P., Bhattacharyya, S. K., & Ahalawat, S. (2012a). Preparation of size controlled silica nano particles and its functional role in cementitious system. Journal of Advanced Concrete Technology, 10(11), 345–352.

Singh, L. P., Bhattacharyya, S. K., Mishra, G., & Ahalawat, S. (2012b). Reduction of calcium leaching in cement hydration process using nanomaterials. Materials Technology, 27(3), 233–238.

Singh, L. P., Karade, S. R., Bhattacharyya, S. K., & Ahalawat, S. (2013). Beneficial role of nano-silica in cement based materials—a review. Construction and Building Materials, 47, 1069–1077.

Tan, B., Lehmler, H. J., Vyas, S. M., Knuston, B. L., & Rankin, S. E. (2005). Controlling nanopore size and shape by fluorosurfactant templating of silica. Chemistry of Materials, 17(4), 916–925.

Taylor, H. F. W. (1997). Cement chemistry. London, UK: Thomas Telford.

Toutanji, H., Delatte, N., & Aggoun, S. (2004). Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cement and Concrete Research, 34(2), 311–319.

Venkatathri, N., & Nanjundan, S. (2009). Synthesis and characterization of a mesoporous silica microsphere from polystyrene. Materials Chemistry and Physics, 113(2–3), 933–936.

Young, J. F., & Hansen, W. (1987). Volume relationships for C-S-H formation based on hydration stoichiometries. Materials Research Society, 85, 313.