Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của Áp suất Thủy Tĩnh Cao và Nhiệt Độ đến Hoạt Động Enzyme và Các Đặc Tính Chất Lượng trong Các Loại Nước Xoài (giống Tommy Atkins và Manila)
Tóm tắt
Hoạt động dư (RA) của pectinmethylesterase (PME), peroxidase (POD) và polyphenoloxidase (PPO) cùng với các thông số vật lý hóa học (pH, tổng chất rắn hòa tan (TSS), hoạt động nước (aw), độ nhớt và màu sắc) của các loại nước xoài Tommy Atkins và Manila đã được đánh giá sau khi xử lý bằng áp suất thủy tĩnh cao (HHP) ở mức 400–550 MPa/0–16 phút ở 34 và 59 °C. Xử lý HHP ở 59 °C đã làm tăng mức độ vô hoạt enzyme hơn so với xử lý ở 34 °C ở cả hai loại nước xoài. Hoạt động dư thấp nhất của PME (26.9–38.6%) và POD (44.7–53%) đạt được trong nước xoài Manila được xử lý ở 450 MPa/8–16 phút/59 °C và 550 MPa/4–16 phút/59 °C, tương ứng. Ngược lại, nước xoài Tommy Atkins được ép ở 550 MPa/8–16 phút/59 °C có RA PPO thấp nhất (28.4–34%). Một sự giảm nhẹ của giá trị pH và TSS ở cả hai loại nước xoài HHP xử lý ở 34 và 59 °C được quan sát, trong khi aw vẫn giữ nguyên sau quá trình xử lý. Độ nhớt của nước xoài có xu hướng tăng lên đến 2.1 lần do việc áp dụng HHP. Không có sự thay đổi đáng kể nào được quan sát trong các thông số màu sắc của nước xoài Tommy Atkins, ngoại trừ ở 550 MPa và 59 °C, nơi chỉ số vàng (YI) cao hơn (122.4 ± 3.3) và giá trị L* thấp hơn (37.3 ± 5.3) được thu được so với nước xoài không xử lý. HHP đã gây ra sự gia tăng giá trị L* trong nước xoài Manila, trong khi không có xu hướng rõ ràng nào được quan sát trong YI. Quá trình HHP tại 550 MPa kết hợp với nhiệt độ nhẹ (59 °C) trong 8 phút có thể là một phương pháp khả thi để giảm hoạt động enzym và bảo tồn các thuộc tính chất lượng như tươi trong nước xoài.
Từ khóa
#Pectinmethylesterase #peroxidase #polyphenoloxidase #áp suất thủy tĩnh cao #chất lượng nước xoàiTài liệu tham khảo
Ahmed, J., Ramaswamy, H. S., & Hiremath, N. (2005). The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science and Technology, 40(8), 885–895.
Anese, M., Nicoli, M. C., DallAglio, G., & Lerici, C. R. (1994). Effect of high pressure treatments on peroxidase and polyphenoloxidase activities. Journal of Food Biochemistry, 18, 285–293.
Balny, C., & Masson, P. (1993). Effects of high-pressure on proteins. Food Reviews International, 9(4), 611–628.
Baron, A., Denes, J. M., & Durier, C. (2006). High-pressure treatment of cloudy apple juice. LWT — Food Science and Technology, 39(9), 1005–1013.
Basak, S., & Ramaswamy, H. S. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.
Bayindirli, A. (2010). Enzymes in fruit and vegetable processing: chemistry and engineering applications. CRC Press.
Bermudez-Aguirre, D., Guerrero-Beltrán, J. A., Barbosa-Cánovas, G. V., & Welti-Chanes, J. (2011). Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Science and Technology International, 17(6), 541–547.
Boynton, B. B., Sims, C. A., Sargent, S., Balaban, M. O., & Marshall, M. R. (2002). Quality and stability of precut mangos and carambolas subjected to high-pressure processing. Journal of Food Science, 67(1), 409–415.
Camiro-Cabrera, M., Escobedo-Avellaneda, Z., Salinas-Roca, B., Martín-Belloso, O., & Welti-Chanes, J. (2017). High hydrostatic pressure and temperature applied to preserve the antioxidant compounds of mango pulp (Mangifera indica L.) Food Bioprocess Technology, 10(4), 639–649.
Cano, M. P., Hernández, A., & de Ancos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88.
Chakraborty, S., Mishra, H. N., & Knorr, D. (2012). Strawberry enzyme inactivation by HPP: models & contours. Germany: Lambert Academic Publishing.
Chakraborty, S., Rao, P.S., & Mishra, H.N. (2013). Unpublished data. Indian Institute of Technology Kharagpur. Agricultural and Food Engineering Department Kharagpur, India.
Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-pressure inactivation of enzymes: a review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety, 13(4), 578–596.
Elez-Martínez, P., Aguiló-Aguayo, I., & Martín-Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 86(1), 71–81.
Escobedo-Avellaneda, Z., Pérez-Simón, I., Lavilla-Martín, M., Baranda-González, A., & Welti-Chanes, J. (2017). Enzymatic and phytochemical stabilization of orange-strawberry-banana beverages by high hydrostatic pressure and mild heat. Food Science and Technology International, 23(2), 185–193.
Guerrero-Beltrán, J. A., Swanson, B. G., & Barbosa-Cánovas, G. V. (2004). High hydrostatic pressure processing of peach puree with and without antibrowning agents. Journal of Food Processing and Preservation, 28(1), 69–85.
Guerrero-Beltrán, J. A. (2005). High hydrostatic pressure processing of mango puree containing antibrowning agents. Food Science and Technology International, 11(4), 261–267.
Heremans, K. (1993). The behavior of proteins under pressure. In R. Winter & J. Jonas (Eds.), High-pressure chemistry, biochemistry and materials science (pp. 443–469). New York: Springer.
Heremans, K. (1995). High pressure effects on biomolecules. In D. A. Ledward, D. E. Johnston, R. G. Earnshaw, & A. P. M. Hasting (Eds.), High pressure processing of foods (pp. 81–97). Leicestershire: Nottingham University Press.
Hernandez, A., & Cano, M. P. (1998). High-pressure and temperature effects on enzyme inactivation in tomato puree. Journal of Agricultural and Food Chemistry, 46(1), 266–270.
Katsaros, G. J., Alexandrakis, Z. S., & Taoukis, P. S. (2017). Kinetic assessment of high pressure inactivation of different plant origin pectinmethylesterase enzymes. Food Engineering Reviews, 9(3), 170–189. https://doi.org/10.1007/s12393-016-9153-3.
Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014a). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40–50.
Kaushik, N., Kaur, B. P., & Rao, P. S. (2014b). Application of high pressure processing for shelf life extension of litchi fruits (Litchi chinensis cv. Bombai) during refrigerated storage. Revista de Agroquímica y Tecnología de Alimentos, 20(7), 527–541.
Kaushik, N., Nadella, T., & Rao, P. S. (2015). Impact of pH and total soluble solids on enzyme inactivation kinetics during high pressure processing of mango (Mangifera indica) pulp. Journal of Food Science, 80(11), E2459–E2470.
Kimball, D. A. (Ed.) (2012). Citrus processing: quality control and technology. Springer Science & Business Media.
Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., & van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science and Emerging Technologies, 4(4), 377–385.
Lei, D. F., Feng, Y., & Jiang, D. Z. (2004). Characterization of polyphenol oxidase from plants. Progress in Natural Science, 14(7), 553–561.
Liu, F., Li, R., Wang, Y., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science & Emerging Technologies, 22, 22–30.
Liu, F., Wang, Y., Bi, X., Guo, X., Fu, S., & Liao, X. (2012). Comparison of microbial inactivation and rheological characteristics of mango pulp after high hydrostatic pressure treatment and high temperature short time treatment. Food and Bioprocess Technology, 6(10), 2675–2684.
Liu, F., Wang, Y., Li, R., Bi, X., & Liao, X. (2013a). Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innovative Food Science & Emerging Technologies, 21, 35–43.
Liu, Y., Zhao, X. Y., Zou, L., & Hu, X. S. (2013b). Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Science and Technology International = Ciencia Y Tecnología de Los Alimentos Internacional, 19(3), 197–207.
Marszalek, K., Mitek, M., & Skapska, S. (2015). The effect of thermal pasteurization and high pressure processing at cold and mild temperatures on the chemical composition, microbial and enzyme activity in strawberry puree. Innovative Food Science and Emerginf Technology, 27, 48–56.
Nath, P., Kale, S. J., & Gupta, R. K. (2016). High pressure processing induced changes in bioactive compounds, antioxidant activity, microbial safety and color attributes of coriander paste. Agricultural Research, 5(2), 182–192.
Plaza, L., Duvetter, T., Monfort, S., Clynen, E., Schoofs, L., Van Loey, A. M., & Hendrickx, M. E. (2007). Purification and thermal and high-pressure inactivation of pectinmethylesterase isoenzymes from tomatoes (Lycopersicone sculentum): a novel pressure labile isoenzymes. Journal of Agricultural and Food Chemistry, 55(22), 9259–9265.
Riahi, E., & Ramaswamy, H. S. (2003). High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation. Biotechnology Progress, 19(3), 908–914.
Rovere, P., Sandei, L., Colombi, A., Munari, M., Ghiretti, G., Carpi, G., & AllAglio, G. (1997). Effects of high-pressure treatment on chopped tomatoes. Industria Conserve, 72, 3–12.
Sarkiyayi, S., Mohammed, M., & Yakubu, A. (2013). Comparative analysis of nutritional and anti nutritional contents of some varieties of mango (Mangifera indica) in Kaduna Metropolis-Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 5(4), 387–391.
Saúco, V. G. (2013). Worldwide mango production and market: current situation and future prospects. Acta Horticulturae, (992), 37–48.
Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56–88.
Swami, N. R., Kaushik, N., & Rao, P. S. (2014). Effect of high pressure processing on rheological properties, pectinmethylesterase activity and microbiological characteristics of aloe vera (Aloe barbadensis Miller) juice. International Journal of Food Properties, 18(7), 1597–1612.
Swami, N. R., Chakraborty, S., & Rao, P. S. (2017). Effect of high pressure thermal processing on the quality attributes of Aloe vera-litchi mixed beverage. Innovative Food Science and Emerging Technologies, 40, 68–77.
Tauscher, B. (1995). Pasteurization of food by hydrostatic high pressure: chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 200(1), 3–13.
Tejada-Ortigoza, V., Escobedo-Avellaneda, Z., Valdez-Fragoso, A., Mújica-Paz, H., & Welti-Chanes, J. (2015). Combined effect of high hydrostatic pressure and mild heat treatments on the pectin methylesterase (PME) inactivation in comminuted orange. Journal of the Science of Food and Agriculture., 95(12), 2438–2444.
Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High-pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science and Emerging Technologies, 11(1), 52–60.
Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54(1), 24–63.
Terefe, N. S., Delon, A., Buckow, R., & Versteeg, C. (2015). Blueberry polyphenol oxidase: characterization and the kinetics of thermal and high pressure activation and inactivation. Food Chemistry, 188, 193–200.
Vargas-Ortiz, M. A., Quintana-Castro, R., Oliart-Ros, R. M., De la Cruz-Medina, J., Ramírez de León, J. A., & García, H. S. (2013). High hydrostatic pressure induces synthesis of heat-shock proteins and trehalose-6-phosphate synthase in Anastrepha ludens larvae. Archives of Insect Biochemistry and Physiology, 82(4), 196–212.
Vásquez-Caicedo, A. L., Schilling, S., Carle, R., & Neidhart, S. (2007). Effects of thermal processing and fruit matrix on β-carotene stability and enzyme inactivation during transformation of mangoes into purée and nectar. Food Chemistry, 102(4), 1172–1186.
von Rohr, P. R., & Trepp, C. (1996). High pressure chemistry engineering. Amsterdam: Elsevier Science.
Yu, Y., Xiao, G., Wu, J., Xu, Y., Tang, D., Chen, Y., Wen, J., & Fu, M. (2013). Comparing characteristic of banana juices from banana pulp treated by high pressure carbon dioxide and mild heat. Innovative Food Science & Emerging Technologies, 18, 95–100.