Effect of Guanxin V in animal model of acute myocardial infarction

Xiaoxiao Zhang1, Chang-le Shao2, Songyi Cheng3, Yinsu Zhu1, Bo Liang1, Ning Gu3
1Nanjing University of Chinese Medicine, Nanjing, China
2Xuzhou City Hospital of TCM, Xuzhou, China
3Department of Cardiology, Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Daming Road 157#, Nanjing, 210000, Jiangsu, People’s Republic of China

Tóm tắt

Abstract Background

Acute myocardial infarction (AMI) is the most serious and lethal manifestation of coronary heart disease worldwide, presenting extremely high disability and mortality. Our previous studies have shown that Guanxin V (GXV) could significantly improve the cardiac function and the blood flow dynamics, and reduce serum levels of inflammatory factors in AMI rats, thus triggering ventricular remodeling (VR) at post-AMI.

Methods

An in vivo AMI model was established in Syrian hamsters by performing the ligation of the left anterior descending coronary artery. Syrian hamsters were randomly divided into four groups, namely Sham operation group (n = 12), AMI group (n = 12), GXV group (GXV 6 g/Kg/d, n = 12), and Tranilast group (Tra 105 mg/Kg/d, n = 12). Drug intervention was conducted for consecutive 8 weeks. Relative biological indicators were measured in the 4th and 8th week, respectively.

Results

Cardiac functions were improved, and the infarcted size and heart weight index were limited in Syrian hamsters of GXV and Tra groups compared with those in AMI group. Furthermore, GXV was able to decrease the number of mast cells and chymase level in Syrian hamsters with AMI. Administration of GXV remarkably inactivated the renin-angiotension-aldosterone system, and alleviated myocardial fibrosis and cardiomyocyte apoptosis, thus slowing down VR at post-AMI.

Conclusion

GXV slows down the process of VR at post-AMI by reducing chymase level and mast cells number, as well as inactivating the reninangiotension-aldosterone system..

Từ khóa


Tài liệu tham khảo

Thiele H, Ohman E. M, de Waha-Thiele S, Zeymer U and Desch S 2019 management of cardiogenic shock complicating myocardial infarction: an update. Eur Heart J. 2019;40:2671–83.

Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial contraction. Am J Physiol. 1935;112:351 AM HEART J 10 843–4.

Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP, Liu G. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodeling by regulating KDM3A. J Cell Mol Med. 2020;24:1099–115.

Bhatt AS, Ambrosy AP, Velazquez EJ. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction. Curr Cardiol Rep. 2017;19:71.

Liang B, Zhang XX, Gu N. Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther. 2020;20(1):345.

Chang KS, Lee NH, Kuo WW, Hu WS, Chang MH, Tsai FJ, Tsai KH, Yang YS, Chen TS, Huang CY. Dung-Shen Downregulates the synergistic apoptotic effects of angiotensin II plus Leu 27-IGF II on Cardiomyoblasts. Acta Cardiol Sin. 2014;30:56–66.

Wang YB, Liu YF, et al. Rehmannia glutinosa extract activates endothelial progenitor cells in a rat model of myocardial infarction through a SDF-1 α CXCR4 cascade. PLoS One. 2013;8(1):54303.

Chen MH, Chen XJ, Wang M, Lin LG, Wang YT. Ophiopogon japonicus--a phytochemical, ethnomedicinal and pharmacological review. J Ethnopharmacol. 2016;181:193–213.

Song T, Yao Y, Wang T, Huang H, Xia H. Tanshinone IIA ameliorates apoptosis of myocardiocytes by up-regulation of miR-133 and suppression of Caspase-9. Eur J Pharmacol. 2017;815:343–50.

Ke Z, Wang G, Yang L, Qiu H, Wu H, Du M, Chen J, Song J, Jia X, Feng L. Crude terpene glycoside component from Radix paeoniae rubra protects against isoproterenol-induced myocardial ischemic injury via activation of the PI3K/AKT/mTOR signaling pathway. J Ethnopharmacol. 2017;206:160–9.

Zhang MY, Wu HW, Xu LP, Yang HJ. Pharmacological effect of Schisandrae Chinensis Fructus and relative active components on cardiovascular and cerebrovascular diseases. Zhongguo Zhong Yao Za Zhi. 2018;43:1536–46.

Komatsu H, Kojima M, Tsutsumi N, Hamano S, Kusama H, Ujiie A, Ikeda S, Nakazawa M. Study of the mechanism of inhibitory action of tranilast on chemical mediator release. Jpn J Pharmacol. 1988;46:43–51.

Pae HO, Jeong SO, Koo BS, Ha HY, Lee KM, Chung HT. Tranilast, an orally active anti-allergic drug, up-regulates the anti-inflammatory heme oxygenase-1 expression but down-regulates the pro-inflammatory cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW264.7 macrophages. Biochem Biophys Res Commun. 2008;371:361–5.

Kagitani S, Ueno H, Hirade S, Takahashi T, Takata M, Inoue H. Tranilast attenuates myocardial fibrosis in association with suppression of monocyte/macrophage infiltration in DOCA/salt hypertensive rats. J Hypertens. 2004;22:1007–15.

Shigeki S, Murakami T, Yata N, Ikuta Y. Treatment of keloid and hypertrophic scars by iontophoretic transdermal delivery of tranilast. Scand J Plast Reconstr Surg Hand Surg. 1997;31:151–8.

Nakatani Y, Nishida K, Sakabe M, Kataoka N, Sakamoto T, Yamaguchi Y, Iwamoto J, Mizumaki K, Fujiki A, Inoue H. Tranilast prevents atrial remodeling and development of atrial fibrillation in a canine model of atrial tachycardia and left ventricular dysfunction. J Am Coll Cardiol. 2013;61:582–8.

See F, Watanabe M, Kompa AR, Wang BH, Boyle AJ, Kelly DJ, Gilbert RE, Krum H. Early and delayed tranilast treatment reduces pathological fibrosis following myocardial infarction. Heart Lung Circ. 2013;22:122–32.

Jun G, Wenbo J, et al. Clinical efficacy of Guanxin V mixture in treating ventricular remodeling after acute myocardial infarction and its mechanism. China Pharmaceuticals. 2017;26(22):30–3.

Cao Y, He X, Lui F, Huang Z, Zhang Y. Chinese medicinal formula Guanxin Shutong capsule protects the heart against oxidative stress and apoptosis induced by ischemic myocardial injury in rats. Exp Ther Med. 2014;7:1033–9.

Ke F, Zuo KK, Ning G. Effects of Guanxin V preparation on rats ventricular remodeling and inflammatory factors with acute myocardial infarction. J Basic Chin Med. 2016;22(1):50–3.

Zhu J, Zhou H, Li C, He Y, Pan Y, Shou Q, Fang M, Wan H, Yang J. Guanxinshutong capsule ameliorates cardiac function and architecture following myocardial injury by modulating ventricular remodeling in rats. Biomed Pharmacother. 2020;130:110527.

Liang Z, Liu LF, Yao TM, Huo Y, Han YL. Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J Geriatr Cardiol. 2012;9:130–6.

Liang B, Qu Y, Zhao QF, Gu N. Guanxin V for coronary artery disease: A retrospective study. Biomed Pharmacother. 2020;128:110280.

Cheng S, Zhang X, Feng Q, Chen J, Shen L, Peng Y, Yang L, Chen D, Zhang H, Sun W, Chen X. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway[J]. Life Sci. 2019;227:82–93.

Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Ruhul Abid M. Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction[J]. Journal of visualized experiments : JoVE. 2017(122):55353.

Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Pina IL, Trogdon JG. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.

Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.

Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27:1281–92.

Warren SE, Royal HD, Markis JE, Grossman W, McKay RG. Time course of left ventricular dilation after myocardial infarction: influence of infarct-related artery and success of coronary thrombolysis. J Am Coll Cardiol. 1988;11:12–9.

Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial response to infarction in the rat. Morphometric measurement of infarct size and myocyte cellular hypertrophy. Am J Pathol. 1985;118:484–92.

Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol. 1991;260:H1406–14.

McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74:693–702.

Benjamin MM, Smith RL, Grayburn PA. Ischemic and functional mitral regurgitation in heart failure: natural history and treatment. Curr Cardiol Rep. 2014;16:517.

Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Et A. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327:669–77.

Yousef ZR, Redwood SR, Marber MS. Postinfarction left ventricular remodelling: where are the theories and trials leading us? HEART. 2000;83:76–80.

Maczewski M, Borys M, Kacprzak P, Gdowski T, Kowalewski M, Wojciechowski D. Late ventricular remodeling in non-reperfused acute myocardial infarction in humans is predicted by angiotensin II type 1 receptor density on blood platelets. Int J Cardiol. 2008;127:57–63.

Hamon M, Filippi-Codaccioni E. The OPTIMMAL trial: losartan or captopril after acute myocardial infarction. Lancet. 2002;360:1886–7.

Doughty RN, Whalley GA, Walsh HA, Gamble GD, Lopez-Sendon J, Sharpe N. Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: the CAPRICORN Echo Substudy. Circulation. 2004;109:201–6.

Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, Videbaek J, Cole DS, Auclert L, Pauly NC. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:1670–6.

Roig E, Perez-Villa F, Morales M, Jimenez W, Orus J, Heras M, Sanz G. Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure. Eur Heart J. 2000;21:53–7.

Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310:H137–52.

Dahlin JS, Hallgren J. Mast cell progenitors: origin, development and migration to tissues. Mol Immunol. 2015;63:9–17.

Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLOS ONE. 2011;6:e28501.

Ahmad S, Ferrario C. M 2018 Chymase inhibitors for the treatment of cardiac diseases: a patent review. Expert Opin Ther Pat. 2010-2018;28:755–64.