Effect of Dzyaloshinskii–Moriya interaction on Heisenberg antiferromagnetic spin chain in a longitudinal magnetic field

Hue University Journal of Science: Natural Science - Tập 130 Số 1D - Trang 31-38 - 2021
H. Thao Pham1, T. Thuan Ngo2, T. Trang Le1, D. Long Hoang1, T. H. Ny Phan3, H. Canh Nguyen4
1Faculty of Physics, University of Education, Hue University, 34 Le Loi St., Hue, Vietnam
2Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen St., Hue, Vietnam
3Pham Van Dong Secondary School, 12 Lam Hoang St., Hue, Vietnam
4Nguyen Hue University, Bien Hoa City, Dong Nai, Vietnam

Tóm tắt

Using functional integral method for the Heisenberg antiferromagnetic spin chain with the added Dzyaloshinskii-Moriya Interaction in the presence of the longitudinal magnetic field, we find out expression for free energy of the spin chain via spin fluctuations, from which quantities characterize the antiferromagnetic order and phase transition such as staggered and total magnetizations derived. From that, we deduce the significant effect of the Dzyaloshinskii-Moriya interaction on the reduction of the antiferromagnetic order and show that the total magnetization can be deviated from the initial one under the influence of canting of the spins due to a combination of the Dzyaloshinskii-Moriya interaction and the magnetic field. Besides, the remarkable role of the transverse spin fluctuations due to the above factors on the antiferromagnetic behaviours of the spin chain is also indicated.  

Từ khóa

#antiferromagnetic spin chain #Dzyaloshinskii–Moriya interaction #transverse spin fluctuations #functional integral method

Tài liệu tham khảo

Pham TH. Thermodynamic Properties and Excitation Spectrum of Spin Chain with Antiferromagnetic – Ferromagnetic Interactions. Journal of Physics: Conference Series. 2019;1274:012006(8). DOI: https://doi.org/10.1088/1742-6596/1274/1/012006

Miyashita S. Phase Transition in Spin Systems with Various Types of Fluctuations. Proceedings of the Japan Academy, Series B. 2010;86(7):643–666. DOI: https://doi.org/10.2183/pjab.86.643

Ivanshin VA, Yushankhai V, Sichelschmidt J, Zakharov DV, Kaul EE, and Geibel C. ESR Study of the Anisotropic Exchange in the Quasi-One-Dimensional Antiferromagnet Sr2V3O9. Physical Review B. 2003;68(6):064404(6). DOI: https://doi.org/10.1103/PhysRevB.68.064404

Bertaina S, Pashchenko VA, Stepanov A, Masuda T, and Uchinokura K. Electron Spin Resonance in the Spin-1/2 Quasi-One-Dimensional Antiferromagnet with Dzyaloshinskii-Moriya Interaction BaCu2Ge2O7. Physical Review Letters. 2004;92:057203(4). DOI: https://doi.org/10.1103/PhysRevLett.92.057203

Ponomaryov AN, Ozerov M, Zviagina L, Wosnitza J, Povarov KY, Xiao F, Zheludev A, Landee C, Čižmár E, Zvyagin AA, and Zvyagin SA. Electron Spin Resonance in a Strong-Rung Spin-1/2 Heisenberg Ladder, Physical Review B. 2016;93(13):134416(4). DOI: https://doi.org/10.1103/PhysRevB.93.134416

Glazkov VN, Fayzullin M, Krasnikova Y, Skoblin G, Schmidiger D, Mühlbauer S, and Zheludev A. ESR Study of the Spin Ladder with Uniform Dzyaloshinskii-Moriya Interaction. Physical Review B. 2015;92(18):184403(12). DOI: https://doi.org/10.1103/PhysRevB.92.184403

Hälg M, Lorenz WEA, Povarov KY, Månsson M, Skourski Y, and Zheludev A. Quantum Spin Chains with Frustration due to Dzyaloshinskii-Moriya Interactions. Physical Review B. 2014;90(17):174413(10). DOI: https://doi.org/10.1103/PhysRevB.90.174413

Dzyaloshinskii IE. Thermodynamic Theory of "Weak" Ferromagnetism in Antiferromagnetic Substances. Soviet Physics — Journal of Experimental and Theoretical Physics. 1957;5(6):1259-1272.

Moriya T. New Mechanism of Anisotropic Superexchange Interaction. Physical Review Letters. 1960;4(5):288-230. DOI: https://doi.org/10.1103/PhysRevLett.4.228

Dmitrienko VE, Ovchinnikova EN, Collins SP, Nisbet G, Beutier G, Kvashnin YO, et al. Measuring the Dzyaloshinskii–Moriya Interaction in a Weak Ferromagnet. Nature Physics. 2014;10:202-206. DOI: https://doi.org/10.1038/nphys2859

Nembach HT, Shaw JM, Weiler M, Jué E and Silva TJ. Linear Relation between Heisenberg Exchange and Interfacial Dzyaloshinskii–Moriya Interaction in Metal Films. Nature Physics. 2015;11:825–829. DOI: https://doi.org/10.1038/nphys3418

Tschirhart H, Ong ETS, Sengupta P, and Schmidt TL. Phase Diagram of Spin-1 Chains with Dzyaloshinskii-Moriya Interaction. Physical Review B. 2019;100(19):195111(7). DOI: https://doi.org/10.1103/PhysRevB.100.195111

Mahdavifar S, Soltani MR, Masoudi AA. Quantum Corrections of the Dzyaloshinskii-Moriya Interaction on the Spin-1/2 AF-Heisenberg Chain in an Uniform Magnetic Field. The European Physical Journal B. 2008;62:215-220. DOI: https://doi.org/10.1140/epjb/e2008-00141-x

Vahedi J, Ashouri A, and Mahdavifar S. Quantum Chaos in the Heisenberg Spin Chain: The Effect of Dzyaloshinskii-Moriya Interaction. Chaos. 2016;26:103106(7). DOI: https://doi.org/10.1063/1.4964745

Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, et al. Real-Space Observation of a Two-Dimensional Skyrmion Crystal, Nature. 2010;465:901–904. DOI: https://doi.org/10.1038/nature09124

Kim S, Ueda K, Go G, Jang PH, Lee KJ, Belabbes A, et al. Correlation of the Dzyaloshinskii–Moriya Interaction with Heisenberg Exchange and Orbital Asphericity. Nature Communications. 2018;9:1648(9). DOI: https://doi.org/10.1038/s41467-018-04017-x

Parente WEF, Pacobahyba JTM, Neto MA, Araújo IG, Plascak JA. Spin-1/2 Anisotropic Heisenberg Antiferromagnet Model with Dzyaloshinskii-Moriya Interaction via Mean-Field Approximation. Journal of Magnetism and Magnetic Materials. 2018;462:8–12. DOI: https://doi.org/10.1016/j.jmmm.2018.04.054

Pham TH. Magnetic Properties and Spin Wave Spectra of a Ferromagnetic Monolayer with 2D Tetragonal Structure: An Application for Co2S2 Monolayer. Journal of Magnetism and Magnetic Materials. 2020;509:166813(8). DOI: https://doi.org/10.1016/j.jmmm.2020.166813

Nath R, Tsirlin AA, Kaul EE, Baenitz M, Büttgen N, Geibel C, et al. Strong Frustration due to Competing Ferromagnetic and Antiferromagnetic Interactions: Magnetic Properties of M(VO)2(PO4)2 (M=Ca and Sr). Physical Review B. 2008; 78(2):024418(13). DOI: https://doi.org/10.1103/PhysRevB.78.024418

Mermin ND and Wagner H. Absence of Ferromagnetism or Antiferromagnetism in One or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters. 1966;17(22):1133–1136. DOI: https://doi.org/10.1103/PhysRevLett.17.1133

Strečka J, Gálisová L and Derzhko O. Ground-State Properties of the Spin-1/2 Heisenberg–Ising Bond Alternating Chain with Dzyaloshinskii–Moriya Interaction. Acta Physica Polonica A. 2010;118(5):742-744. DOI: https://doi.org/10.12693/APhysPolA.118.742

Varkarchuk IA, Rudavskii YK. Method of Functional Integration in the Theory of Spin Systems. Theoretical and Mathematical Physics. 1981;49:1002-1011. DOI: https://doi.org/10.1007/BF01028995

Kashid V, Schena T, Zimmermann B, Mokrousov Y, Blügel S, Shah V, et al. Dzyaloshinskii-Moriya Interaction and Chiral Magnetism in 3d−5d Zigzag Chains: Tight-Binding Model and Ab Initio Calculations. Physical Review B. 2014;90(5):054412(18). DOI: https://doi.org/10.1103/PhysRevB.90.054412

Yang JH, Li ZL, Lu XZ, Whangbo MH, Wei SH, Gong XG, et al. Strong Dzyaloshinskii-Moriya Interaction and Origin of Ferroelectricity in Cu2OSeO3. Physical Review Letters. 2012;109(10):107203(5). DOI: https://doi.org/10.1103/PhysRevLett.109.107203

Von Ranke PJ, de Oliveira NA, Alho BP, Plaza EJR, de Sousa VSR, CaronL, et al. Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements. Journal of Physics Condensed Matter. 2009;21:056004(8). DOI: https://doi.org/10.1088/0953-8984/21/5/056004