Effect of CT imaging on the accuracy of the finite element modelling in bone

Emir Benca1, Morteza Amini2,3, Dieter H. Pahr3,2
1Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
2Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
3Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria

Tóm tắt

AbstractThe finite element (FE) analysis is a highly promising tool to simulate the behaviour of bone. Skeletal FE models in clinical routine rely on the information about the geometry and bone mineral density distribution from quantitative computed tomography (CT) imaging systems. Several parameters in CT imaging have been reported to affect the accuracy of FE models. FE models of bone are exclusively developed in vitro under scanning conditions deviating from the clinical setting, resulting in variability of FE results (< 10%). Slice thickness and field of view had little effect on FE predicted bone behaviour (≤ 4%), while the reconstruction kernels showed to have a larger effect (≤ 20%). Due to large interscanner variations (≤ 20%), the translation from an experimental model into clinical reality is a critical step. Those variations are assumed to be mostly caused by different “black box” reconstruction kernels and the varying frequency of higher density voxels, representing cortical bone. Considering the low number of studies together with the significant effect of CT imaging on the finite element model outcome leading to high variability in the predicted behaviour, we propose further systematic research and validation studies, ideally preceding multicentre and longitudinal studies.

Từ khóa


Tài liệu tham khảo

Keyak JH, Rossi SA, Jones KA, Skinner HB (1997) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133. https://doi.org/10.1016/S0021-9290(97)00123-1

Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P (2012) QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 23:563–572. https://doi.org/10.1007/s00198-011-1568-3

Zysset PK, Dall'Ara E, Varga P, Pahr DH (2013) Finite element analysis for prediction of bone strength. BoneKEy reports 2. doi: 10.1038%2Fbonekey.2013.120

Baumbach SF, Synek A, Traxler H, Mutschler W, Pahr D, Chevalier Y (2015) The influence of distal screw length on the primary stability of volar plate osteosynthesis—a biomechanical study. J Orthop Surg Res 10:139. https://doi.org/10.1186/s13018-015-0283-8

Shriram D, Kumar GP, Cui F, Lee YHD, Subburaj K (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-06271-3

Benca E, Synek A, Amini M et al (2019) QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-46739-y

Eggermont F, van der Wal G, Westhoff Pet al (2020) Patient-specific finite element computer models improve fracture risk assessments in cancer patients with femoral bone metastases compared to clinical guidelines. Bone 130:115101. doi:https://doi.org/10.1016/j.bone.2019.115101

Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M (2006) Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy. J Biomech 39:2457–2467. https://doi.org/10.1016/j.jbiomech.2005.07.018

Jacobs CR, Davis BR, Rieger CJ, Francis JJ, Saad M, Fyhrie DP (1999) The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J Biomech 32:1159–1164. https://doi.org/10.1016/S0021-9290(99)00115-3

Schileo E, Dall’Ara E, Taddei F et al (2008) An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech 41:2483–2491. https://doi.org/10.1016/j.jbiomech.2008.05.017

Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L (2000) Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. J Biomech 33:1611–1618. https://doi.org/10.1016/S0021-9290(00)00140-8

Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33:1575–1583. https://doi.org/10.1016/S0021-9290(00)00149-4

Grassi L, Schileo E, Taddei F et al (2012) Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech 45:394–399. https://doi.org/10.1016/j.jbiomech.2011.10.019

Langton C, Pisharody S, Keyak J (2009) Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys 31:668–672. https://doi.org/10.1016/j.medengphy.2008.12.007

Naylor KE, McCloskey EV, Eastell R, Yang L (2013) Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res 28:1014–1021. https://doi.org/10.1002/jbmr.1856

Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11. https://doi.org/10.1002/jbmr.5650040103

Kalender WA, Deak P, Kellermeier M, van Straten M, Vollmar SV (2009) Application- and patient size-dependent optimization of x-ray spectra for CT. Med Phys 36:993–1007. https://doi.org/10.1118/1.3075901

Viceconti M, Qasim M, Bhattacharya P, Li X (2018) Are CT-based finite element model predictions of femoral bone strengthening clinically useful? Curr Osteoporos Rep 16:216–223. https://doi.org/10.1007/s11914-018-0438-8

Knowles NK, Reeves JM, Ferreira LM (2016) Quantitative computed tomography (QCT) derived bone mineral density (BMD) in finite element studies: a review of the literature. J Exp Orthop 3:36–36. https://doi.org/10.1186/s40634-016-0072-2

Michalski AS, Edwards WB, Boyd SK (2019) The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis. J Clin Densitom 22:219–228. https://doi.org/10.1016/j.jocd.2017.09.001

Nazemi SM, Cooper DML, Johnston JD (2016) Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: a feasibility study. Med Eng Phys 38:978–987. https://doi.org/10.1016/j.medengphy.2016.06.011

Nazemi SM, Kalajahi SMH, Cooper DML et al (2017) Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. J Biomech 59:101–108. https://doi.org/10.1016/j.jbiomech.2017.05.018

Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi--detector row CT attenuation measurements: assessment of intra-and interscanner variability with an anthropomorphic body CT phantom 1. Radiology 242:109–119

Sitzer A, Aulmann L, Wendlandt R et al (2015) Evaluation of local alterations in femoral bone mineral density measured via quantitative CT. Current Directions in Biomedical Engineering 1:327–330. https://doi.org/10.1515/cdbme-2015-0081

Keyak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787. https://doi.org/10.1016/S1350-4533(03)00081-X

Eggermont F, Derikx LC, Free J et al (2018) Effect of different CT scanners and settings on femoral failure loads calculated by finite element models. J Orthop Res 36:2288–2295. https://doi.org/10.1002/jor.23890

Amini M, Reisinger A, Pahr D (2019) Effect of selected scan parameters on QCT-based BMD estimations of a femur. Paper presented at the 25th Congress of the European Society of Biomechanics, Vienna, Austria,

Celenk C, Celenk P (2012) Computed tomography - clinical applications. InTech

Norton MR, Gamble C (2001) Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 12 (1):79-84. https://doi.org/10.1034/j.1600-0501.2001.012001079.x

Engelke K, Lang T, Khosla S et al (2015) Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III. J Clin Densitom 18:393–407

Eggermont F, Verdonschot N, van der Linden Y, Tanck E (2019) Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models. PloS One 14:e0220564. https://doi.org/10.1371/journal.pone.0220564

Brown JK, Timm W, Bodeen G et al (2016) Asynchronously calibrated quantitative bone densitometry. J Clin Densitom 20:216–225 https://doi.org/10.1016/j.jocd.2015.11.001

Sande EPS, Martinsen ACT, Hole EO, Olerud HM (2010) Interphantom and interscanner variations for Hounsfield units—establishment of reference values for HU in a commercial QA phantom. Phys Med Biol 55:5123. https://doi.org/10.1088/0031-9155/55/17/015

Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM (2017) Phantomless calibration of CT scans for measurement of BMD and bone strength-inter-operator reanalysis precision. Bone 103:325–333

Giambini H, Dragomir-Daescu D, Huddleston PM, Camp JJ, An K-N, Nassr A (2015) The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation. J Biomech Eng 137. https://doi.org/10.1115/1.4031572

Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T (2015) Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. J Biomech 48:153–161. https://doi.org/10.1016/j.jbiomech.2014.09.016

Carpenter RD, Saeed I, Bonaretti S et al (2014) Inter-scanner differences in in vivo QCT measurements of the density and strength of the proximal femur remain after correction with anthropomorphic standardization phantoms. Med Eng Phys 36 (10):1225-1232. https://doi.org/10.1016/j.medengphy.2014.06.010

Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi–detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119. https://doi.org/10.1148/radiol.2421052066

Free J, Eggermont F, Derikx L et al (2018) The effect of different CT scanners, scan parameters and scanning setup on Hounsfield units and calibrated bone density: a phantom study. Biomed Phys Eng Express 4 (5):055013. https://doi.org/10.1088/2057-1976/aad66a

Mackin D, Fave X, Zhang L et al (2015) Measuring CT scanner variability of radiomics features. Invest Radiol 50 (11):757. 10.1097%2FRLI.0000000000000180

Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB (2005) Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 437:219-228. https://doi.org/10.1097/01.blo.0000164400.37905.22

Katz Y, Dahan G, Sosna J, Shelef I, Cherniavsky E, Yosibash Z (2019) Scanner influence on the mechanical response of QCT-based finite element analysis of long bones. J Biomech 86:149–159. https://doi.org/10.1016/j.jbiomech.2019.01.049

Cuppone M, Seedhom BB, Berry E, Ostell AE (2004) The longitudinal Young’s modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data. Calcif Tissue Int 74:302–309. https://doi.org/10.1007/s00223-002-2123-1