Effect of Ammonium and Nitrate Nutrition On Some Physiological Processes in Higher Plants ‐ Growth, Photosynthesis, Photorespiration, and Water Relations

Plant Biology - Tập 9 Số 1 - Trang 21-29 - 2007
Shiwei Guo1,2, Yi Zhou1, Qirong Shen1, Fan Zhang3
1College of Resources and Environmental Sciences, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China
2Institute of Plant Nutrition and Soil Science, Christian‐Albrechts‐Universität, Hermann‐Rodewald‐Straße 4, 24098 Kiel, Germany
3College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuanxi Road 2, Beijing, 100094, China

Tóm tắt

Abstract: Ammonium and nitrate as different forms of nitrogen nutrients impact differently on some physiological and biochemical processes in higher plants. Compared to nitrate, ammonium results in small root and small leaf area, which may contribute to a low carbon gain, and an inhibition on growth. On the other hand, due to (photo)energy saving, a higher CO2 assimilation rate per leaf area was observed frequently in plants supplied with ammonium than in those supplied with nitrate. These results were dependent not only on higher Rubisco content and/or activity, but also on RuBP regeneration rate. The difference in morphology such as chloroplast volume and specific leaf weight might be the reason why the CO2 concentration in the carboxylation site and hence the photorespiration rate differs in plants supplied with the two nitrogen forms. The effect of nitrogen form on water uptake and transportation in plants is dependent both on leaf area or shoot parameter, and on the root activity (i.e., root hydraulic conductivity, aquaporin activity).

Từ khóa


Tài liệu tham khảo

10.1080/01904169609365207

10.1104/pp.113.3.961

10.1093/jxb/47.4.485

10.1104/pp.91.1.352

10.1104/pp.99.4.1294

10.1111/j.1469-8137.1996.tb01859.x

10.1007/BF00392238

Buchanan B.B., 2000, Biochemistry and Molecular Biology of Plants

Canvin D. T., 1990, Plant Physiology, Biochemistry, and Molecular Biology, 253

10.1007/BF02198124

10.1104/pp.100.1.7

10.1080/01904169909365655

10.1104/pp.105.1.9

10.1093/jexbot/51.342.61

10.1023/A:1004543128899

10.1006/anbo.1993.1078

10.1007/BF00012534

Cruz C., 2005, How does glutamine synthetase activity determine plant tolerance to ammonium?, Planta, 23, 1068

10.1104/pp.30.1.82

10.1146/annurev.pp.43.060192.003123

10.1007/BF00017084

10.1111/j.1365-3040.1995.tb00542.x

10.1007/0-306-48137-5_14

10.1104/pp.110.2.339

Farquhar G. D., 1982, Physiological Plant Ecology II. Water Relations and Carbon Assimilation Encycl. Plant Physiol. New Ser., Vol. 12 B., 550

10.1007/BF00386231

10.1080/01904169409364762

10.1007/s00442-002-0996-3

10.1104/pp.41.3.422

10.1016/0304-3800(93)E0082-E

Fuhrer J., 1984, Steady‐state carbon flow in photosynthesis and photorespiration in Lemna minor L.: the effect of temperature and ammonium nitrogen, Photosynthetica, 18, 74

10.2134/agronj1980.00021962007200050016x

10.2134/agronj1983.00021962007500060020x

10.1104/pp.83.4.933

10.1007/BF00155513

10.1002/jpln.19971600218

10.1111/j.1399-3054.2005.00467.x

Guo S.The effects of N form (ammoniumversusnitrate) on growth photosynthesis and water uptake ofPhaseolus vulgarisL. Plants.PhD Thesis Christian‐Albrechts‐Universität Kiel . (2001a).

10.1023/A:1015014417018

Guo S., 2001, Food Security and Sustainability of Agro‐Ecosystems Through Basic and Applied Research, 220

10.1081/PLN-100103806

10.1104/pp.98.4.1429

10.1111/j.1469-8137.1993.tb03806.x

Heldt H. W., 1997, Plant Biochemistry and Molecular Biology

10.1080/01904169109364208

Høgh‐Jensen H., 1997, Effects of drought and inorganic N form on nitrogen fixation and carbon isotope discrimination in Trifolium repens, Plant Physiology Biochemistry, 35, 55

10.1146/annurev.pp.45.060194.003045

10.1080/01904169409364757

10.1046/j.1469-8137.2001.00107.x

10.1038/384557a0

10.1104/pp.110.3.903

10.1104/pp.68.6.1231

10.1080/01904169209364343

10.1111/j.1469-8137.1989.tb00676.x

10.1080/01904169009364151

10.1146/annurev.pp.45.060194.003221

10.1111/j.1365-3040.2005.01493.x

10.1111/j.1365-3040.1990.tb01978.x

10.1080/01904169109364193

10.1080/01904168309363151

10.1080/01904168409363295

10.1016/S0098-8472(01)00131-9

10.1093/oxfordjournals.pcp.a029493

10.1007/s004250050205

Marschner H., 1995, Mineral Nutrition of Higher Plants

10.1071/PP9960593

10.1046/j.1365-3040.1999.00432.x

Noctor G., 1998, A re‐evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity?, Journal of Experimental Botany, 49, 1895

10.1104/pp.106.2.407

Ogren W. L., 1984, Photorespiration: pathways, regulation, and modification, Annual Review of Plant Physiology and Plant Molecular Biology, 35, 415, 10.1146/annurev.pp.35.060184.002215

10.1093/jxb/44.7.1167

Pill W. G., 1977, Effects of NH4 and NO3 nutrition with and without pH adjustment on tomato growth, ion composition, and water relations, Journal of American Society Horticultural Science, 102, 78, 10.21273/JASHS.102.1.78

Pill W. G., 1978, Effects of nitrogen form and level on ion concentrations, water stress, and blossom‐end rot incidence in tomato, Journal of American Society Horticultural Science, 103, 265, 10.21273/JASHS.103.2.265

10.1081/PLN-120037536

10.1104/pp.52.6.677

10.1104/pp.105.4.1159

10.1104/pp.107.2.575

10.1073/pnas.0404388101

10.1111/j.1469-8137.1985.tb02816.x

10.1111/j.1469-8137.1990.tb00536.x

10.1023/A:1004646732225

Sage R. F., 1994, Plant‐Environment Interactions, 413

10.1007/BF00959528

Salsac L., 1987, Nitrate and ammonium nutrition in plants, Plant Physiology and Biochemistry, 25, 805

10.1006/anbo.1993.1087

10.1111/j.1469-8137.1993.tb03818.x

10.1104/pp.78.1.71

10.1111/j.1399-3054.1988.tb09205.x

10.1111/j.1365-3040.1995.tb00348.x

10.1093/pcp/pce004

10.1111/j.0031-9317.2004.0241.x

10.1104/pp.105.1.167

10.1071/PP9910287

10.1007/BF00384257

10.1093/jexbot/51.343.227

10.1034/j.1399-3054.2000.110107.x

10.1002/jpln.19971600217

Wilcox G. E., 1977, Influence of nitrogen form on exudation rate, and ammonium, amide, and cation composition of xylem exudate in tomato, Journal of American Society Horticultural Science, 102, 192, 10.21273/JASHS.102.2.192

Wu J., 1991, Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition, Plant Biology, 104, 283

10.1007/s004250050358

10.1071/PP9910583

Zelitch I., 1979, Encyclopedia of Plant Physiology, 353

10.1055/s-2000-7498

Zwieniecki M. A., 2001, Hydrogel control of xylem hydraulic resistance in plants, Science Express, 25, 2001