Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mugabo Y, Lim GE (2018) Scaffold proteins: from coordinating signaling pathways to metabolic regulation. Endocrinology 159:3615–3630. https://doi.org/10.1210/en.2018-00705
Carmona-Rosas G, Alcántara-Hernández R, Hernández-Espinosa DA (2018) Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2. Eur J Cell Biol 97:349–358. https://doi.org/10.1016/j.ejcb.2018.04.001
Elramli N, Karahoda B, Sarikaya-Bayram Ö et al (2019) Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans. PLoS Genet 15:e1008053–e1008053. https://doi.org/10.1371/journal.pgen.1008053
Zheng Y, Liu B, Wang L et al (2017) Homeostatic control of Hpo/MST kinase activity through autophosphorylation-dependent recruitment of the STRIPAK PP2A phosphatase complex. Cell Rep 21:3612–3623. https://doi.org/10.1016/j.celrep.2017.11.076
Pal S, Lant B, Yu B et al (2017) CCM-3 promotes C. elegans germline development by regulating vesicle trafficking cytokinesis and polarity. Curr Biol 27:868–876. https://doi.org/10.1016/j.cub.2017.02.028
Ulrich K, Daria R, Ines T (2019) STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 400:1005. https://doi.org/10.1515/hsz-2019-0173
Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148. https://doi.org/10.1016/j.biocel.2013.11.021
Madsen CD, Hooper S, Tozluoglu M et al (2015) STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 17:68–80. https://doi.org/10.1038/ncb3083
Lin J-L, Chen H-C, Fang H-I et al (2001) MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 20:6559–6569. https://doi.org/10.1038/sj.onc.1204818
Lin Z-H, Wang L, Zhang J-B et al (2014) MST4 promotes hepatocellular carcinoma epithelial-mesenchymal transition and metastasis via activation of the p-ERK pathway. Int J Oncol 45:629–640. https://doi.org/10.3892/ijo.2014.2455
Chen M, Zhang H, Shi Z et al (2018) The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer. J Biol Chem 293:14455–14469. https://doi.org/10.1074/jbc.RA118.003279
Fife CM, McCarroll JA, Kavallaris M (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171:5507–5523. https://doi.org/10.1111/bph.12704
Gkretsi V, Stylianopoulos T (2018) Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol 8:145. https://doi.org/10.3389/fonc.2018.00145
MacGrath SM, Koleske AJ (2012) Cortactin in cell migration and cancer at a glance. J Cell Sci 125:1621–1626. https://doi.org/10.1242/jcs.093781
Shih P-Y, Lee S-P, Chen Y-K, Hsueh Y-P (2014) Cortactin-binding protein 2 increases microtubule stability and regulates dendritic arborization. J Cell Sci 127:3521–3534. https://doi.org/10.1242/jcs.149476
Chen Y-K, Chen C-Y, Hu H-T, Hsueh Y-P (2012) CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin-PP2A complex. Mol Biol Cell 23:4383–4392. https://doi.org/10.1091/mbc.E12-05-0365
Jain BP, Pandey S (2018) WD40 repeat proteins: signalling scaffold with diverse functions. Protein J 37:391–406. https://doi.org/10.1007/s10930-018-9785-7
Sanghamitra M, Talukder I, Singarapu N et al (2008) WD-40 repeat protein SG2NA has multiple splice variants with tissue restricted and growth responsive properties. Gene 420:48–56. https://doi.org/10.1016/j.gene.2008.04.016
Jain BP, Chauhan P, Tanti GK et al (2015) Tissue specific expression of SG2NA is regulated by differential splicing, RNA editing and differential polyadenylation. Gene 556:119–126. https://doi.org/10.1016/j.gene.2014.11.045
Soni S, Tyagi C, Grover A, Goswami SK (2014) Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res Notes 7:446–446. https://doi.org/10.1186/1756-0500-7-446
Soni S, Jain BP, Gupta R et al (2018) Biophysical characterization of SG2NA variants and their interaction with DJ-1 and calmodulin in vitro. Cell Biochem Biophys 76:451–461. https://doi.org/10.1007/s12013-018-0854-5
Chauhan P, Gupta R, Jain BP et al (2020) Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 44:637–650. https://doi.org/10.1002/cbin.11264
Tanti GK, Goswami SK (2014) SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med 75:1–13. https://doi.org/10.1016/j.freeradbiomed.2014.07.009
Tanti GK, Pandey S, Goswami SK (2015) SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 463:524–531. https://doi.org/10.1016/j.bbrc.2015.05.069
Jain BP, Pandey S, Saleem N et al (2017) SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones 22:853–866. https://doi.org/10.1007/s12192-017-0816-7
Pandey S, Talukdar I, Jain BP et al (2017) GSK3β and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle. Sci Rep 7:7555–7555. https://doi.org/10.1038/s41598-017-08085-9
Tang Y, Chen M, Zhou L et al (2019) Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discov 5:3. https://doi.org/10.1038/s41421-018-0077-3
Franz M, Rodriguez H, Lopes C et al (2018) GeneMANIA update 2018. Nucleic Acids Res 46:W60–W64. https://doi.org/10.1093/nar/gky311
Miller I, Min M, Yang C et al (2018) Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep 24:1105-1112.e5. https://doi.org/10.1016/j.celrep.2018.06.110
Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329
Parker AL, Kavallaris M, McCarroll JA (2014) Microtubules and their role in cellular stress in cancer. Front Oncol 4:153. https://doi.org/10.3389/fonc.2014.00153
Thibaudeau TA, Smith DM (2019) A practical review of proteasome pharmacology. Pharmacol Rev 71:170–197. https://doi.org/10.1124/pr.117.015370
Moon S, Lee B-H (2018) Chemically induced cellular proteolysis: an emerging therapeutic strategy for undruggable targets. Mol Cells 41:933–942
Bear JE, Haugh JM (2014) Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr Opin Cell Biol 30:74–82. https://doi.org/10.1016/j.ceb.2014.06.005
Quintero-Fabián S, Arreola R, Becerril-Villanueva E et al (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370. https://doi.org/10.3389/fonc.2019.01370
Qi Q, Obianyo O, Du Y et al (2017) Blockade of asparagine endopeptidase inhibits cancer metastasis. J Med Chem 60:7244–7255. https://doi.org/10.1021/acs.jmedchem.7b00228
Larrinaga G, Perez I, Blanco L et al (2014) Prolyl endopeptidase activity is correlated with colorectal cancer prognosis. Int J Med Sci 11:199–208. https://doi.org/10.7150/ijms.7178
Yang F, Yu N, Wang H et al (2018) Downregulated expression of hepatoma-derived growth factor inhibits migration and invasion of prostate cancer cells by suppressing epithelial-mesenchymal transition and MMP2, MMP9. PLoS ONE 13:e0190725. https://doi.org/10.1371/journal.pone.0190725
Hamouda H, Kaup M, Ullah M et al (2014) Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J Proteome Res 13:6144–6151. https://doi.org/10.1021/pr5003005
Du J, Hong S, Dong L et al (2015) Dynamic sialylation in transforming growth factor-β (TGF-β)-induced epithelial to mesenchymal transition. J Biol Chem 290:12000–12013. https://doi.org/10.1074/jbc.M115.636969
Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84. https://doi.org/10.1038/s41580-018-0080-4
Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001
Pei D, Shu X, Gassama-Diagne A, Thiery JP (2019) Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 21:44–53. https://doi.org/10.1038/s41556-018-0195-z
Haensel D, Dai X (2018) Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. Dev Dyn Off Publ Am Assoc Anat 247:473–480. https://doi.org/10.1002/dvdy.24561
Schaeffer D, Somarelli JA, Hanna G et al (2014) Cellular migration and invasion uncoupled: increased migration is not an inexorable consequence of epithelial-to-mesenchymal transition. Mol Cell Biol 34:3486–3499. https://doi.org/10.1128/MCB.00694-14
Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7:8. https://doi.org/10.1126/scisignal.2005189
Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929. https://doi.org/10.1038/onc.2008.343
Serrano-Gomez SJ, Maziveyi M, Alahari SK (2016) Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 15:18–18. https://doi.org/10.1186/s12943-016-0502-x
Liu Y-N, Yin JJ, Abou-Kheir W et al (2012) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32:296
Dondajewska E, Juzwa W, Mackiewicz A, Dams-Kozlowska H (2017) Heterotypic breast cancer model based on a silk fibroin scaffold to study the tumor microenvironment. Oncotarget 9:4935–4950. https://doi.org/10.18632/oncotarget.23574
Werner S, Frey S, Riethdorf S et al (2013) Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 288:22993–23008. https://doi.org/10.1074/jbc.M113.456293
Rigby S, Huang Y, Streubel B et al (2009) The lymphoma-associated fusion tyrosine kinase ITK-SYK requires pleckstrin homology domain-mediated membrane localization for activation and cellular transformation. J Biol Chem 284:26871–26881. https://doi.org/10.1074/jbc.M109.034272
Bednarczyk RB, Tuli NY, Hanly EK et al (2018) Macrophage inflammatory factors promote epithelial-mesenchymal transition in breast cancer. Oncotarget 9:24272–24282. https://doi.org/10.18632/oncotarget.24917
Sahu SK, Tiwari N, Pataskar A et al (2017) FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development. Nat Commun 8:1523–1523. https://doi.org/10.1038/s41467-017-01366-x
Cidado J, Wong HY, Rosen DM et al (2016) Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget 7:6281–6293
Haynes J, Srivastava J, Madson N et al (2011) Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 22:4750–4764. https://doi.org/10.1091/mbc.E11-02-0119
Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758
Przybyla L, Muncie JM, Weaver VM (2016) Mechanical control of epithelial-to-mesenchymal transitions in development and cancer. Annu Rev Cell Dev Biol 32:527–554. https://doi.org/10.1146/annurev-cellbio-111315-125150
Escobar B, de Cárcer G, Fernández-Miranda G et al (2010) Brick1 is an essential regulator of actin cytoskeleton required for embryonic development and cell transformation. Cancer Res 70:9349. https://doi.org/10.1158/0008-5472.CAN-09-4491
Rao JY, Hemstreet GP 3rd, Hurst RE et al (1993) Alterations in phenotypic biochemical markers in bladder epithelium during tumorigenesis. Proc Natl Acad Sci USA 90:8287–8291. https://doi.org/10.1073/pnas.90.17.8287
Rao JY, Hemstreet GP, Hurst RE et al (1991) Cellular F-actin levels as a marker for cellular transformation: correlation with bladder cancer risk. Cancer Res 51:2762–2767
Rao JY, Hurst RE, Bales WD et al (1990) Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res 50:2215
Rodrigues E, Macauley MS (2018) Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities. Cancers 10:207. https://doi.org/10.3390/cancers10060207
Li X, Wang X, Tan Z et al (2016) Role of glycans in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 6:33–33. https://doi.org/10.3389/fonc.2016.00033
Wheelock MJ, Shintani Y, Maeda M et al (2008) Cadherin switching. J Cell Sci 121:727. https://doi.org/10.1242/jcs.000455
Derycke LDM, Bracke ME (2004) N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 48:463–476. https://doi.org/10.1387/ijdb.041793ld
Paredes J, Albergaria A, Oliveira JT et al (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869. https://doi.org/10.1158/1078-0432.CCR-05-0059