Ecosystem services from coffee agroforestry in Central America: estimation using the CAF2021 model

Agroforestry Systems - Tập 96 - Trang 969-981 - 2022
Marcel van Oijen1, Jeremy Haggar2, Mirna Barrios3, Lucie Büchi2, Rolando Cerda4, Stefania Cerretelli2, Erick López5, Elias de Melo Virginio Filho4, Alejandra Ospina4
1Independent Researcher, Edinburgh, UK
2Natural Resources Institute, University of Greenwich, Medway, UK
3CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Managua, Nicaragua
4CATIE – Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
5Centro Estudios Ambientales y Biodiversidad, Universidad del Valle de Guatemala, Ciudad de Guatemala, Guatemala

Tóm tắt

The goal of sustainable coffee production requires multiple functions from agroforestry systems. Many are difficult to quantify and data are lacking, hampering the choice of shade tree species and agronomic management. Process-based modelling may help quantify ecosystem services and disservices. We introduce and apply coffee agroforestry model CAF2021 ( https://doi.org/10.5281/zenodo.5862195 ). The model allows for complex systems with up to three shade tree species. It simulates coffee yield, timber and fruit production by shade trees, soil loss in erosion, C-sequestration, N-fixation, -emission and -leaching. To calibrate the model, we used multivariate data from 32 different treatments applied in two long-term coffee agroforestry experiments in Costa Rica and Nicaragua. Without any further calibration, the model was then applied to agroforestry systems on 89 farms in Costa Rica and 79 in Guatemala where yields had been reported previously in farmer interviews. Despite wide variation in environmental and agronomic conditions, the model explained 36% of yield variation in Costa Rica but only 15% in Guatemala. Model analysis quantified trade-offs between yield and other ecosystem services as a function of fertilisation and shading.

Tài liệu tham khảo

Vezy R, Guerric LM, Mathias C, et al (2019) DynACof: A process-based model to study growth, yield and ecosystem services of coffee agroforestry systems. https://doi.org/10.5281/zenodo.3246268 Cannavo P, Sansoulet J, Harmand J-M et al (2011) Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agr Ecosyst Environ 140:1–13. https://doi.org/10.1016/j.agee.2010.11.005 Castellanos E, Quilo A, Pons D (2010) Estudio de linea base de carbono en cafetales. Universidad del Valle de Guatemala Charbonnier F, Roupsard O, le Maire G et al (2017) Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant Cell Environ 40:1592–1608. https://doi.org/10.1111/pce.12964 Chaves CB, Cayón SG, Jones JW (2009) Modeling plantain (Musa AAB Simmonds) potential yield. Agronomía Colombiana 27:359–366 CIRAD (2019) Country Profile: Mexico. HAB. https://hassavocadoboard.com/wp-content/uploads/2019/11/hab-marketers-country-profiles-2019-mexico.pdf Damour G, Ozier-Lafontaine H, Dorel M (2012) Simulation of the growth of banana (Musa spp.) Cultivated on cover-crop with simplified indicators of soil water and nitrogen availability and integrated plant traits. Field Crop Res 130:99–108. https://doi.org/10.1016/j.fcr.2012.02.013 De Leijster V, Santos MJ, Wassen MW et al (2021) Ecosystem services trajectories in coffee agroforestry in Colombia over 40 years. Ecosyst Serv 48:101246. https://doi.org/10.1016/j.ecoser.2021.101246 Elzebroek T, Wind K (2008) Guide to Cultivated Plants. CABI, Wallingford Fick SE, Hijmans RJ (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086 Goodall KE, Bacon CM, Mendez VE (2015) Shade tree diversity, carbon sequestration, and epiphyte presence in coffee agroecosystems: a decade of smallholder management in San Ramón, Nicaragua. Agr Ecosyst Environ 199:200–206. https://doi.org/10.1016/j.agee.2014.09.002 Haggar J, Barrios M, Bolaños M et al (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301. https://doi.org/10.1007/s10457-011-9392-5 Haggar J, Casanoves F, Cerda R et al (2021) Shade and agronomic intensification in coffee agroforestry systems: trade-off or synergy? Front Sustain Food Syst 5:131. https://doi.org/10.3389/fsufs.2021.645958 Jha S, Bacon CM, Philpott SM et al (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64:416–428. https://doi.org/10.1093/biosci/biu038 Körschens M (2021) Long-term field experiments (LTEs)importance, overview, soil organic matter. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Springer, Cham, pp 215–231 Martinez Acosta AM, Cayón Salinas DG (2011) Dinámica del Crecimiento y Desarrollo del Banano (Musa AAA Simmonds cvs. Gran Enano y Valery). RevFacNalAgrMedellin 64:6055–6064 Meylan L, Gary C, Allinne C et al (2017) Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agr Ecosyst Environ 245:32–42. https://doi.org/10.1016/j.agee.2017.05.005 Meylan L, Merot A, Gary C, Rapidel B (2013) Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: the case of erosion control in coffee-based agroforestry systems in Costa Rica. Agric Syst 118:52–64. https://doi.org/10.1016/j.agsy.2013.02.002 Monzón-Martinez ZL (2019) Perfil economico del aguacate de Guatemala y su potencial de exportación para los mercados de El Salvador y Honduras. PhD thesis, Universidad de San Carlos de Guatemala Mustaffa MM, Kumar V (2012) Banana production and productivity enhancement through spatial, water and nutrient management. J Hortl Sci 7:1–28 Noponen MRA (2012) Carbon and economic performance of coffee agroforestry systems in Costa Rica and Nicaragua. PhD thesis Noponen MRA, Healey JR, Soto G, Haggar JP (2013) Sink or source the potential of coffee agroforestry systems to sequester atmospheric CO2 into soil organic carbon. Agr Ecosyst Environ 175:60–68. https://doi.org/10.1016/j.agee.2013.04.012 Ovalle-Rivera O, Van Oijen M, Läderach P et al (2020) Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agrofor Syst 94:2033–2051. https://doi.org/10.1007/s10457-020-00521-6 Rahn E, Vaast P, Läderach P et al (2018) Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecol Model 371:76–89. https://doi.org/10.1016/j.ecolmodel.2018.01.009 Rice RA (2008) Agricultural intensification within agroforestry: the case of coffee and wood products. Agr Ecosyst Environ 128:212–218. https://doi.org/10.1016/j.agee.2008.06.007 Sauvadet M, den Meersche KV, Allinne C et al (2019) Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Sci Total Environ 649:1065–1074. https://doi.org/10.1016/j.scitotenv.2018.08.291 Schaffer B, Whiley AW, Searle C (1999) Atmospheric CO2 enrichment, root restriction, photosynthesis, and dry-matter partitioning in subtropical and tropical fruit crops. HortScience 34:1033–1037. https://doi.org/10.21273/HORTSCI.34.6.1033 Sepúlveda N et al. (2016) Efecto de la sombra y niveles de insumo sobre la producción de café en la región del pacífico de Nicaragua (2002–2015) Soto-Pinto L, Perfecto I, Castillo-Hernandez J, Caballero-Nieto J (2000) Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agr Ecosyst Environ 80:61–69. https://doi.org/10.1016/S0167-8809(00)00134-1 Tomasella J, Hodnett M (2004) Pedotransfer functions for tropical soils. In: Developments in Soil Science. Elsevier, pp 415–429 Tomasella J, Ya P, Crestana S, Rawls WJ (2003) Comparison of two techniques to develop pedotransfer functions for water retention. Soil Sci Soc Am J 67:1085–1092. https://doi.org/10.2136/sssaj2003.1085 Triberti L, Nastri A, Baldoni G (2016) Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. Eur J Agron 74:47–55. https://doi.org/10.1016/j.eja.2015.11.024 Vaast P, van Kanten R, Siles P et al (2008) Biophysical interactions between timber trees and Arabica coffee in suboptimal conditions of central America. In: Nair PKR, Jose S, Gordon AM (eds) Toward agroforestry design. Springer, Dordrecht, pp 133–146 Van den Bergh I, Ramirez J, Staver C et al (2012) Climate change in the subtropics: the impacts of projected averages and variability on banana productivity. Acta Hort 89:99. https://doi.org/10.17660/ActaHortic.2012.928.9 van Noordwijk M, Coe R, Sinclair FL et al (2021) Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley. Mitig Adapt Strat Glob Change 26:18. https://doi.org/10.1007/s11027-021-09954-5 Van Oijen M (2020) Bayesian Compendium. Springer, Berlin Van Oijen M, Dauzat J, Harmand J-M et al (2010a) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor Syst 80:361–378. https://doi.org/10.1007/s10457-010-9291-1 Van Oijen M, Dauzat J, Harmand J-M et al (2010b) Coffee agroforestry systems in Central America: I. A review of quantitative information on physiological and ecological processes. Agrofor Syst 80:341–359. https://doi.org/10.1007/s10457-010-9294-y Virto I, Barré P, Burlot A, Chenu C (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26. https://doi.org/10.1007/s10533-011-9600-4