Ecological Function of Phenolic Compounds from Mediterranean Fucoid Algae and Seagrasses: An Overview on the Genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile

Journal of Marine Science and Engineering - Tập 8 Số 1 - Trang 19
Anna Maria Mannino, Carla Micheli

Tóm tắt

Biodiversity is undergoing rapid and worrying changes, partially driven by anthropogenic activities. Human impacts and climate change (e.g., increasing temperature and ocean acidification), which act at different spatial scales, represent the most serious threats to biodiversity and ecosystem structure and function. In the Mediterranean Sea, complex systems such as fucoid algae and seagrasses, characterized by a high associated biodiversity, are regularly exposed to natural and anthropogenic pressures. These systems, particularly sensitive to a variety of stressors, evolved several physiological and biochemical traits as a response to the different pressures which they are subjected to. For instance, they produce a huge quantity of secondary metabolites such as phenolic compounds, to adapt to different environmental stressors and to defend themselves from biological pressures. These natural products are receiving increasing attention due to their possible applications in a wide range of industrial sectors. In this paper we provide an overview on the ecological role of phenolic compounds from the genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile, also highlighting their potential use as ecological biomarkers.

Từ khóa


Tài liệu tham khảo

Zapata, 1979, Phenolic acids in seagrasses, Aquat. Bot., 7, 307, 10.1016/0304-3770(79)90032-9

Agostini, 1998, Distribution of phenolic compounds in the seagrass Posidonia oceanica, Phytochemistry, 48, 611, 10.1016/S0031-9422(97)01118-7

Heglmeier, 2010, Secondary metabolites of Posidonia oceanica (Posidoniaceae), Biochem. Syst. Ecol., 38, 964, 10.1016/j.bse.2010.07.001

2014, Phlorotannins from Sargassaceae species: Interesting molecules for ecophysiological and valorisation purposes, Adv. Bot. Res., 71, 379

Rezzonico, 2015, Phenolic fingerprint of the seagrass Posidonia oceanica from four locations in the Mediterranean Sea: First evidence for the large predominance of chicoric acid, Bot. Mar., 58, 379, 10.1515/bot-2014-0098

Zidorn, 2016, Secondary metabolities of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function, Phytochemistry, 124, 5, 10.1016/j.phytochem.2016.02.004

Mekinić, I.G., Skroza, D., Šimat, V., Hamed, I., Čagalj, M., and Perković, Z.P. (2019). Phenolic Content of Brown Algae (Phaeophyceae) Species: Extraction, Identification, and Quantification. Biomolecules, 9.

Figueroa, 2006, Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta), Mar. Biol., 148, 459, 10.1007/s00227-005-0102-6

Figueroa, 2014, Intrathallus variation of phenolic compounds, antioxidant activity and phenolsulfatase activity in Cystoseira tamariscifolia (Phaeophyceae) from southern Spain, Cienc. Mar., 40, 1, 10.7773/cm.v40i1.2350

Amsler, 2006, Defensive and sensory chemical ecology of brown algae, Adv. Bot. Res., 43, 1

Quintano, 2014, Short-term ecophysiological and biochemical responses of Cystoseira tamariscifolia and Ellisolandia elongata to changes in solar irradiance and nutrient levels, Aquat. Biol., 22, 227, 10.3354/ab00573

Agrawal, A.A., Tuzun, S., and Bent, E. (1999). A survey of herbivore-inducible defensive proteins and phytochemicals. Induced Plant Defenses against Pathogens and Herbivores, APS Press.

McClintock, J.B., and Baker, B.J. (2001). Effects of secondary metabolites on digestion in marine herbivores. Marine Chemical Ecology, CRC Press.

Haznedaroglu, 2007, HPLC determination of chicoric acid in leaves of Posidonia oceanica, Pharm. Biol., 45, 745, 10.1080/13880200701585717

Pergent, G., Boudouresque, C.F., Dumay, D., Pergent-Martini, C., and Wyllie-Echeverria, S. (2008). Competition between the invasive macrophyte Caulerpa taxifolia and the seagrass Posidonia oceanica: Contrasting strategies. BMC Ecol., 8.

Micheli, 2012, Changes in genetic structure of Posidonia oceanica at Monterosso al Mare (Ligurian Sea) and its resilience over a decade (1998–2009), Environ. Manag., 50, 598, 10.1007/s00267-012-9917-3

Rotini, 2013, Effectiveness and consistency of a suite of descriptors for assessing the ecological status of seagrass meadows (Posidonia oceanica L. Delile), Estuar. Coast. Shelf Sci., 130, 252, 10.1016/j.ecss.2013.06.015

Messina, C.M., Renda, G., Laudicella, V.A., Trepos, R., Fauchon, M., Hellio, C., and Santulli, A. (2019). From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from Trapani Saltworks, NW Sicily) with a Focus on Antioxidants and Antimicrobial Properties. Int. J. Mol. Sci., 20.

Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., Ballesteros, E., Bianchi, C.N., Corbera, J., and Dailianis, T. (2010). The biodiversity of the Mediterranean Sea: Estimates, patterns and threats. PLoS ONE, 5.

Coll, 2012, The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves, Glob. Ecol. Biogeogr., 21, 465, 10.1111/j.1466-8238.2011.00697.x

Lejeusne, 2010, Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea, Trends Ecol. Evol., 25, 250, 10.1016/j.tree.2009.10.009

Orellana, 2019, Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend, Eur. J. Phycol., 54, 447, 10.1080/09670262.2019.1590862

Pergent, 2014, Climate change and Mediterranean seagrass meadows: A synopsis for environmental managers, Mediterr. Mar. Sci., 15, 462, 10.12681/mms.621

Mineur, 2015, European seaweeds under pressure: Consequences for communities and ecosystem functioning, J. Sea Res., 98, 91, 10.1016/j.seares.2014.11.004

Giorgi, 2006, Climate change hot-spots, Geophys. Res. Lett., 33, L08707, 10.1029/2006GL025734

Thibaut, 2005, Long-term decline of the populations of Fucales (Cystoseira, Sargassum) in the Albères coast (northwestern Mediterranean), Mar. Pollut. Bull., 50, 1472, 10.1016/j.marpolbul.2005.06.014

Ceccherelli, 2018, Seagrass collapse due to synergistic stressors is not anticipated by phenological changes, Oecologia, 186, 1137, 10.1007/s00442-018-4075-9

Stiger, 2004, Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): Interspecific, ontogenic and spatio-temporal variations, Bot. Mar., 47, 402, 10.1515/BOT.2004.058

Migliore, L., Rotini, A., Randazzo, D., Albanese, N.N., and Giallongo, A. (2007). Phenol contents and 2D electrophoresis protein pattern: A promising tool to monitor Posidonia meadow health state. BMC Ecol., 7.

Arnold, 2012, Ocean acidification and the loss of phenolic substances in marine plants, PLoS ONE, 7, e35107, 10.1371/journal.pone.0035107

Sathya, 2017, Antioxidant properties of phlorotannins from brown seaweed Cystoseira trinodis (Forsskål) C. Agardh, Arab. J. Chem., 10, S2608, 10.1016/j.arabjc.2013.09.039

Dang, 2018, Comparison of chemical profile and antioxidant properties of the brown algae, Int. J. Food Sci. Technol., 53, 174, 10.1111/ijfs.13571

Lemesheva, 2018, Physiological functions of phlorotannins, Biol. Commun., 63, 70, 10.21638/spbu03.2018.108

Lopes, G., Sousa, C., Silva, L.R., Pinto, E., Andrade, P.B., Bernando, J., Mouga, T., and Valentão, P. (2012). Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions?. PLoS ONE, 7.

Abdelhamid, 2018, Phytochemical analysis and evaluation of the antioxidant, anti-Inflammatory, and antinociceptive potential of phlorotannin-rich fractions from three Mediterranean brown seaweeds, Mar. Biotechnol., 20, 60, 10.1007/s10126-017-9787-z

Farvin, 2019, Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast, J. Appl. Phycol., 31, 2653, 10.1007/s10811-019-1739-8

Ragan, 1986, Phlorotannins, brown alga polyphenols, Prog. Phycol. Res., 4, 129

Pavia, 1997, Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum, Mar. Ecol. Prog. Ser., 157, 139, 10.3354/meps157139

Koivikko, 2005, Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions, J. Chem. Ecol., 31, 195, 10.1007/s10886-005-0984-2

Hernandez-Ledesma, B., and Herrero, M. (2013). Bioactive phenolic compounds from algae. Bioactive Compounds from Marine Foods: Plants and Animal Sources, John Wiley & Sons Ltd.

Arnold, 2002, Marine tannins: The importance of a mechanistic framework for predicting ecological roles, J. Chem. Ecol., 28, 1919, 10.1023/A:1020737609151

Dumay, 2004, Variations in the concentration of phenolic compounds in the seagrass Posidonia oceanica under conditions of competition, Phytochemistry, 65, 3211, 10.1016/j.phytochem.2004.09.003

Sieg, 2013, Chemical Ecology of Marine Angiosperms: Opportunities at the Interface of Marine and Terrestrial Systems, J. Chem. Ecol., 39, 687, 10.1007/s10886-013-0297-9

Giaccone, 1973, Le Cistoseire e la vegetazione sommersa del Mediterraneo, Atti Ist. Veneto Sci. Lett. Arti, 131, 59

Ballesteros, 1990, Structure and dynamics of the community of Cystoseira zosteroides (Turner) C. Agardh (Fucales, Phaeophyceae) in the Northwestern Mediterranean, Sci. Mar., 54, 217

Hereu, 2008, On the occurrence, structure and distribution of deep-water Cystoseira (Phaeophyceae) populations in the Port-Cros National Park (Northwestern Mediterranean), Eur. J. Phycol., 43, 263, 10.1080/09670260801930330

Sales, 2009, Shallow Cystoseira (Fucales: Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW Mediterranean): Relationships with environmental factors and anthropogenic pressures, Estuar. Coast. Shelf Sci., 84, 476, 10.1016/j.ecss.2009.07.013

Mangialajo, 2013, Cartography of littoral rocky-shore communities (CARLIT) as a tool for ecological quality assessment of coastal waters in the Eastern Adriatic Sea, Ecol. Indic., 34, 87, 10.1016/j.ecolind.2013.04.021

Graham, 2004, Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs, Ecosystems, 7, 341, 10.1007/s10021-003-0245-6

Sales, 2010, Long-term comparison of algal assemblages dominated by Cystoseira crinita (Fucales, Heterokontophyta) from Cap Corse (Corsica, North Western Mediterranean), Eur. J. Phycol., 45, 404, 10.1080/09670262.2010.498585

Arenas, 2015, Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae, Glob. Chang. Biol., 21, 1422, 10.1111/gcb.12655

EEC, 1992 (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union, 206, 7–50.

Council of Europe (1979). Convention Relative à La Conservation De La Vie Sauvage Et Du Milieu Naturel de L’Europe, Council of Europe.

UNEP/MAP (2009). Report of the 16th Ordinary Meeting of the Contracting Parties to the Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and its Protocols, Marrakesh, Morocco, 3–5 November 2009, Mediterranean Action Plan.

Thibaut, 2015, Decline and local extinction of Fucales in French Riviera: The harbinger of future extinctions?, Medit. Mar. Sci., 16, 206, 10.12681/mms.1032

Boudouresque, 2016, The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea), Estuar. Coast. Shelf Sci., 181, 196, 10.1016/j.ecss.2016.08.049

EC, 2000 (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community actions in the field of water policy. Off. J. Eur. Communities, 22, 1–73.

European Commission (2008). Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for Community actions in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Communities, 164, 19–40.

Orlando-Bonaca, M., Lipej, L., Malej, A., Francé, J., Cermelj, B., Bajt, O., Kovac, N., Mavric, B., Turk, V., and Mozetic, P. (2013). Izbor Elementov Za Vzpostavitev Programa Spremljanja Stanja Morskega Okolja (po členu 11 ODMS) = Selection of Elements to Establish the Monitoring Program of the Marine Environment (Article 11 MSFD). National Report in Slovenian, Marine Biology Station Piran, National Institute of Biology. Porocila MBP, 144.

Bouzon, 2016, Seasonal biochemical and photophysiological responses in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta), Mar. Environ. Res., 115, 89, 10.1016/j.marenvres.2015.11.014

Mangialajo, 2008, Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages, Mar. Ecol. Prog. Ser., 358, 63, 10.3354/meps07400

Strain, 2014, Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems, Glob. Chang. Biol., 20, 3300, 10.1111/gcb.12619

Djakovac, 2016, Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea, Mar. Pollut. Bull., 106, 162, 10.1016/j.marpolbul.2016.03.010

Singh, 2006, Phloroglucinol compounds of natural origin, Nat. Prod. Rep., 23, 558, 10.1039/b600518g

Targett, 1998, Minireview-predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans, J. Phycol., 34, 195, 10.1046/j.1529-8817.1998.340195.x

Barre, 2010, The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance, Mar. Drugs, 8, 988, 10.3390/md8040988

2013, Preparation and chromatographic analysis of phlorotannins, J. Chromatogr. Sci., 51, 825, 10.1093/chromsci/bmt045

Connan, 2006, Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga Sargassum muticum (Yendo) Fensholt along the coast of Western Brittany (France), Aquat. Bot., 85, 339

Connan, 2012, Phenology, TPC and size-fractioning phenolics variability in temperate Sargassaceae (Phaeophyceae, Fucales) from Western Brittany: Native vs. introduced species, Mar. Environ. Res., 80, 1, 10.1016/j.marenvres.2012.05.011

Ferret, 2012, Total phenolic, size-fractionated phenolics and fucoxanthin content of tropical Sargassaceae (Fucales, Phaeophyceae) from the South Pacific Ocean: Spatial and specific variability, Phycol. Res., 60, 37, 10.1111/j.1440-1835.2011.00634.x

Gangadhar, 2017, Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities, Tetrahedron, 28, 1486, 10.1016/j.tetasy.2017.10.014

Schoenwaelder, 2000, Phenolic compounds in the embryo development of several northern hemisphere fucoids, Plant Biol., 2, 24, 10.1055/s-2000-9178

Ferreres, 2012, Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties, Mar. Drugs, 10, 2766, 10.3390/md10122766

Acosta, 2016, Can macroalgae provide promising anti-tumoral compounds? A closer look at Cystoseira tamariscifolia as a source for antioxidant and anti-hepatocarcinoma compounds, PeerJ, 4, e1704, 10.7717/peerj.1704

Sellimi, 2017, Polyphenolic-protein-polysaccharide ternary conjugates from Cystoseira barbata Tunisian seaweed as potential biopreservatives: Chemical, antioxidant and antimicrobial properties, Int. J. Biol. Macromol., 105, 1375, 10.1016/j.ijbiomac.2017.08.007

Heffernan, 2015, Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins, Mar. Drugs, 13, 509, 10.3390/md13010509

Whitman, 2001, Differences in herbivore preferences, phlorotannin production, and nutritional quality between juvenile and adult tissues from marine brown algae, Mar. Biol., 139, 201, 10.1007/s002270000507

Mannino, A.M., Vaglica, V., and Oddo, E. (2017). Interspecific variation in total phenol content in temperate brown algae. J. Biol. Res., 90.

Connan, 2004, Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae, Bot. Mar., 47, 410, 10.1515/BOT.2004.057

Mannino, 2014, Seasonal variation in total phenolic content of Dyctiopteris polypodioides (Dictyotaceae) from the Sicilian coast, Flora Mediterr., 24, 39, 10.7320/FlMedit24.039

Mannino, 2016, Effects of temperature on total phenolic compounds in Cystoseira amentacea (C. Agardh) Bory (Fucales, Phaeophyceae) from southern Mediterranean, Plant Biosyst., 150, 152, 10.1080/11263504.2014.941033

Steinberg, 1990, Fish feeding and chemical defenses of tropical brown algae in Western Australia, Mar. Ecol. Prog. Ser., 58, 253, 10.3354/meps058253

Paul, 1990, The Biogeography of polyphelonic compounds in marine macroalgae: Temperate brown algal defenses deter feeding by tropical herbivorous fishes, Oceanologia, 84, 158

Ank, 2019, Latitudinal variation in phlorotannin contents from Southwestern Atlantic brown seaweeds, PeerJ, 7, e7379, 10.7717/peerj.7379

Railkin, A.I. (2004). Marine Biofouling: Colonization Processes and Defenses, CRC Press.

Ragan, 1978, Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.), J. Exp. Mar. Biol. Ecol., 34, 245, 10.1016/S0022-0981(78)80006-9

Mccarthy, 1999, Phlorotannin allocation among tissues of northeastern pacific kelps and rockweeds, J. Phycol., 35, 482

Breton, 2006, Co-occurrence and antioxidant activities of fucol and fucophlorethol classes of polymeric phenols in Fucus spiralis, Bot. Mar., 49, 347

Breton, 2011, Distribution and radical scavenging activity of phenols in Ascophyllum nodosum (Phaeophyceae), J. Exp. Mar. Biol. Ecol., 399, 167, 10.1016/j.jembe.2011.01.002

Cruces, 2012, Phlorotannin and antioxidant responses upon short-term exposure to UV radiation and elevated temperature in three South Pacific kelps, Photochem. Photobiol., 88, 58, 10.1111/j.1751-1097.2011.01013.x

Schoenwaelder, 2008, The biology of phenolic containing vesicles, Algae, 23, 163, 10.4490/ALGAE.2008.23.3.163

Figueroa, 2014, Vulnerability and acclimation to increased UVB in the three intertidal macroalgae of different morpho-functional groups, Mar. Environ. Res., 97, 30, 10.1016/j.marenvres.2014.01.009

Jormalainen, 2003, Induction of phlorotannin production in a brown alga: Defense or resource dynamics?, Oikos, 103, 640, 10.1034/j.1600-0706.2003.12635.x

Karez, 1995, Metal contents in polyphenolic fractions extracted from the brown alga Padina gymnospora, Bot. Mar., 38, 151, 10.1515/botm.1995.38.1-6.151

Connan, 2011, Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin, Aquat. Toxicol., 104, 1, 10.1016/j.aquatox.2011.03.016

Korbee, 2017, Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae), Clim. Chang., 142, 67, 10.1007/s10584-017-1943-y

Horta, 2015, Macroalgal responses to ocean acidification depend on nutrient and light levels, Front. Mar. Sci., 2, 26

Bertness, M.D., Gaines, S.D., and Hay, M.E. (2001). Rocky subtidal communities. Marine Community Ecology, Sinauer Press.

Silchenko, 2017, Brown alga metabolites–inhibitors of marine organism fucoidan hydrolases, Chem. Nat. Compd., 53, 345, 10.1007/s10600-017-1985-4

1988, Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus, Ecology, 69, 655, 10.2307/1941014

Swanson, 2002, Induction, exudation and the UV protective role of kelp phlorotannins, Aquat. Bot., 73, 241, 10.1016/S0304-3770(02)00035-9

Shibata, 2006, Extracellular secretion of phenolic substances from living brown algae, J. Appl. Phycol., 18, 787, 10.1007/s10811-006-9094-y

Littler, 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: Field and laboratory tests of a functional form model, Am. Nat., 116, 25, 10.1086/283610

Steneck, 1994, A functional group approach to the structure of algal-dominated communities, Oikos, 69, 476, 10.2307/3545860

Pavia, 2000, Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum, Mar. Ecol. Prog. Ser., 193, 285, 10.3354/meps193285

Larkum, A.W.D., Orth, R.J., and Duarte, C.M. (2006). Seagrasses: Biology, Ecology and Conservation, Springer.

Orth, 2006, A Global Crisis for Seagrass Ecosystems, BioScience, 56, 987, 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarra, I., and Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang., 3.

Larkum, A.W.D., Orth, R.J., and Duarte, C.M. (2006). Taxonomy and Biogeography in Seagrasses. Seagrasses: Biology, Ecology and Conservation, Springer.

Bremer, 2009, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III, Bot. J. Linn. Soc., 161, 105, 10.1111/j.1095-8339.2009.00996.x

Boudouresque, C.F., Bernard, G., Bonhomme, P., Charbonnel, E., Diviacco, G., Meinesz, A., Pergent, G., Pergent-Martini, C., Ruitton, S., and Tunesi, L. (2012). Protection and Conservation of Posidonia Oceanica Meadows, RAMOGE and RAC/SPA Publish.

Green, E.P., and Short, F.T. (2003). The Seagrasses of Western Mediterranean. World Atlas of Seagrasses, University of California Press.

Gnisci, 2020, Assessment of the ecological structure of Posidonia oceanica (L.) Delile on the northern coast of Lazio, Italy (central Tyrrhenian, Mediterranean), Ital. Bot., 9, 1, 10.3897/italianbotanist.9.46426

Boudouresque, 2004, Marine biodiversity in the Mediterranean: Status of species, populations and communities, Trav. Sci. Parc Natl. Port-Cros, 20, 97

Leoni, 2005, Descriptors of Posidonia oceanica meadows: Use and application, Ecol. Indic., 5, 213, 10.1016/j.ecolind.2005.02.004

Micheli, 2005, Genetic variability of Posidonia oceanica (L.) Delile in relation to local factors and biogeographic patterns, Aquat. Bot., 82, 210, 10.1016/j.aquabot.2005.03.002

Bonacorsi, 2013, Is Posidonia oceanica regression a general feature in the Mediterranean Sea?, Mediterr. Mar. Sci., 14, 193, 10.12681/mms.334

Cariello, 1979, Distribution of chicoric acid during leaf development of Posidonia oceanica, Bot. Mar., 22, 359, 10.1515/botm.1979.22.6.359

Daayf, 2008, Plant phenolics-Secondary metabolites with diverse functions, Recent Advances in Polyphenol Research, Volume 1, 1

Boumaza, 2014, Effects of urban effluents on spatial structure, morphology and total phenols of Posidonia oceanica: Comparison with a reference site, J. Exp. Mar. Biol. Ecol., 457, 113, 10.1016/j.jembe.2014.04.009

Cheynier, 2013, Plant phenolics: Recent ad advances on their biosynthesis, genetics, and ecophysiology, Plant Physiol. Biochem., 72, 1, 10.1016/j.plaphy.2013.05.009

Papadopoulou, 2004, Characterization of protein–polyphenol interactions, Trends Food Sci. Technol., 15, 186, 10.1016/j.tifs.2003.09.017

Sęczyk, Ł., Świeca, M., Kapusta, I., and Gawlik-Dziki, U. (2019). Protein–Phenolic Interactions as a Factor Affecting the Physicochemical Properties of White Bean Proteins. Molecules, 24.

Boudouresque, C.F., Jeudy de Grissac, A., and Olivier, J. (1984). Analyse des substances phenoliques des restes de Posidonia oceanica. (L.) Delile provenanton sediments holocenes et de deposits actuels. GIS Posidonia International Workshop, Gis Posidonie Publish.

Cuny, 1995, Water soluble phenolic compounds of the marine phanerogam Posidonia oceanica in a Mediterranean area colonised by the introduced chlorophyte Caulerpa taxifolia, Aquat. Bot., 52, 237, 10.1016/0304-3770(95)00504-8

Kaal, 2016, Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat, Aquat. Bot., 133, 50, 10.1016/j.aquabot.2016.05.009

Cornara, L., Pastorino, G., Borghesi, B., Salis, A., Clericuzio, M., Marchetti, C., Damonte, G., and Burlando, B. (2018). Posidonia oceanica (L.) Delile Ethanolic exstract modulates cell activities with skin health applications. Mar. Drugs, 16.

Bitam, 2012, The first record of neolignans from the marine phanerogam Posidonia oceanica, Phytochem. Lett., 5, 696, 10.1016/j.phytol.2012.06.016

Papenbrock, J. (2012). Highlights in Seagrasses’ phylogeny, physiology and metabolism: What makes them Special?. ISRN Bot.

Klap, 2000, Retention of lignin in seagrasses: Angiosperms that returned to the sea, Mar. Ecol. Prog. Ser., 194, 1, 10.3354/meps194001

Ferrat, 2003, Hydrosoluble phenolic compounds production in a Mediterranean seagrass according to mercury contamination, Gul. Mex. Sci., 21, 108

Rotini, 2011, Assessment of Posidonia oceanica (L.) Delile conservation status by standard and putative approaches: The case study of Santa Marinella meadow (Italy, W Mediterranean), Open J. Ecol., 1, 48, 10.4236/oje.2011.12006

Voudouris, K. (2012). Posidonia oceanica and Zostera marina as Potential Biomarkers of Heavy Metal Contamination in Coastal Systems. Ecological Water Quality-Water Treatment and Reuse, In Tech.

Cannac, 2006, Effects of fish farming on flavonoids in Posidonia oceanica, Sci. Total Environ., 370, 91, 10.1016/j.scitotenv.2006.07.016

Leoni, 2006, Morphological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water, J. Exp. Mar. Biol. Ecol., 339, 1, 10.1016/j.jembe.2006.05.017

Steele, 2012, Idiosyncratic response of seagrass phenolic production following sea urchin grazing, Mar. Ecol. Prog. Ser., 466, 81, 10.3354/meps09921

Cozza, 2004, Cytophisiological features of Posidonia oceanica as putative markers of environmental conditions, Chem. Ecol., 20, 215, 10.1080/02757540410001689777

Micheli, 1995, Photosynthetic performance and polychlorinated biphenyl (PCB) accumulation by the macroalgae Ulva laetevirens, Sci. Total Environ., 171, 137, 10.1016/0048-9697(95)04692-4

Micheli, 2010, Genetic input by Posidonia oceanica (L.) Delile fruits dispersed by currents in the Ligurian Sea, Plant Biosyst., 144, 333, 10.1080/11263501003764798

Micheli, 2015, Genetic diversity and structure in two protected Posidonia oceanica meadows, Mar. Environ. Res., 109, 124, 10.1016/j.marenvres.2015.06.016

Leoni, 2007, Physiological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water J, Exp. Mar. Biol. Ecol., 349, 73, 10.1016/j.jembe.2007.05.006

Machaix, J.-J., Fleuriet, A., and Jay-Allemand, C. (2005). Les Composés Phénoliques des Végétaux, un Exemple de Métabolites Secondaires D’importance Economique, Presses Polytechniques et Universitaires Romandes.

Yates, 1993, Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus, Ecology, 74, 1757, 10.2307/1939934

Strauss, 1999, The ecology and evolution of plant tolerance to herbivory Trends Ecol, Evol., 14, 179

Coley, 1985, Resource availability and plant antiherbivore defense, Science, 230, 895, 10.1126/science.230.4728.895

Goecker, 2005, Effect of nitrogen concentration in turtlegrass Thalassia testudium on consumption by the bucktooth parrofish Sparisoma radians, Mar. Ecol. Prog. Ser., 286, 239, 10.3354/meps286239

Tomas, 2011, Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant–herbivore interactions, Ecology, 92, 1807, 10.1890/10-2095.1

Zimmerman, 1997, Impact of CO2 enrichment on productivity and light requirements on eelgrass, Plant Physiol., 115, 599, 10.1104/pp.115.2.599

Invers, 2002, Potential effect of increased global CO2 availability on the depth distribution of the seagrass Posidonia oceanica (L.) Delile: A tentative assessment using a carbon balance model, Bull. Mar. Sci., 71, 1191

Arnold, T., Freundlich, G., Weilnau, T., Verdi, A., and Tibbets, I. (2014). Impacts of groundwater discharge at Myora Springs (North Stradbroke Island, Australia) on the phenolic metabolism of eelgrass, Zostera muelleri, and grazing by the juvenile rabbitfish, Siganus fuscescens. PLoS ONE, 9.

Verges, 2007, Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica, Mar. Ecol. Prog. Ser., 343, 107, 10.3354/meps06885

Ramajo, 2016, Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: From physiology to herbivory, Sci. Rep., 6, 38017, 10.1038/srep38017

Endara, 2011, The re source availability hypothesis revisited: A meta analisis, Funct. Ecol., 25, 389, 10.1111/j.1365-2435.2010.01803.x

Boudouresque, 2006, Impact of fish farming facilities on Posidonia oceanica meadows: A review, Mar. Ecol., 27, 310, 10.1111/j.1439-0485.2006.00122.x

Duarte, 2010, Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality, Glob. Chang. Biol., 16, 2366, 10.1111/j.1365-2486.2009.02130.x

Zenetos, 2012, Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Patterns in introduction trends and pathways, Mediterr. Mar. Sci., 13, 328, 10.12681/mms.327

Katsanevakis, 2013, Invading European Seas: Assessing pathways of introduction of marine aliens, Ocean Coast. Manag., 76, 64, 10.1016/j.ocecoaman.2013.02.024

Mannino, 2018, Human activities trigger change in marine landscape, Flora Mediterr., 28, 295

Pergent, 2000, Marine phanerogams as a tool in the evaluation of marine trace metal contamination: An example from the Mediterranean, Int. J. Environ. Pollut., 13, 126, 10.1504/IJEP.2000.002313

Calvo, 2010, Seagrasses along the Sicilian coasts, Chem. Ecol., 26, 249, 10.1080/02757541003636374

Domina, G., Campisi, P., Mannino, A.M., Sparacio, I., and Raimondo, F.M. (2018). Environmental quality assessment of the Sicilian coast using a multi-disciplinary approach. Acta Zool. Bulg., 11–18.

Cozza, 2019, Biomonitoring of Posidonia oceanica beds by a multiscale approach, Aquat. Bot., 156, 14, 10.1016/j.aquabot.2019.04.002

Jahnke, 2015, A meta-analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long-lived seagrass Posidonia oceanica, Mol. Ecol., 24, 2336, 10.1111/mec.13174