Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tập thể dục eccentric 24 giờ trước khi giảm áp hạ thấp tăng cường áp lực giảm
Tóm tắt
Các nghiên cứu trên động vật đã chỉ ra rằng những chấn thương cơ xương gần đây làm tăng nguy cơ bị bệnh giảm áp (DCS). Tuy nhiên, cho đến nay chưa có nghiên cứu thực nghiệm tương tự nào được thực hiện trên con người. Mục tiêu của nghiên cứu này là điều tra xem tổn thương cơ do tập thể dục (EIMD) - được kích thích bởi công việc eccentric và đặc trưng bởi sự giảm sức mạnh cũng như đau nhức cơ diễn ra muộn (DOMS) - có dẫn đến việc hình thành tăng cường khí tĩnh mạch (VGE) trong quá trình tiếp xúc với áp suất hạ thấp sau đó hay không. Mỗi đối tượng (n = 13) đã được tiếp xúc hai lần với độ cao mô phỏng 24.000 ft trong 90 phút, trong khi hít thở oxy. Hai mươi bốn giờ trước một trong những lần tiếp xúc trên độ cao, mỗi đối tượng đã thực hiện 15 phút tập thể dục bằng cách quay tay eccentric. Các dấu hiệu của EIMD được xác định thông qua sự giảm sức mạnh cơ bắp tay bắp (isometric m. biceps brachii) và DOMS được đánh giá trên thang điểm đau Borg CR10. Sự hiện diện của VGE đã được đo trong tâm thất phải của tim bằng siêu âm, với các phép đo được thực hiện khi nghỉ ngơi và sau ba cú đá chân cũng như ba lần gập tay. Mức độ VGE được đánh giá bằng thang điểm Eftedal-Brubakk phân loại sáu bậc và điểm số độ nghiêm trọng tích hợp Kisman (KISS). Tập thể dục eccentric đã gây ra DOMS (trung vị 6.5), giúp giảm sức mạnh bắp tay (từ 230 ± 62 N xuống 151 ± 8.8 N) và làm tăng KISS trung bình ở độ cao 24.000 ft, cả khi nghỉ ngơi (từ 1.2 ± 2.3 lên 6.9 ± 9.2, p = 0.01) và sau khi gập tay (từ 3.8 ± 6.2 lên 15.5 ± 17.3, p = 0.029). EIMD do công việc eccentric gây ra làm giải phóng VGE phản ứng với áp suất giảm cấp tính.
Từ khóa
#tập thể dục eccentric #tổn thương cơ do tập thể dục #khí tĩnh mạch #áp suất hạ thấp #bệnh giảm áp #DOMS #sức mạnh cơ bắp tay #siêu âmTài liệu tham khảo
Adler HF (1964) Dysbarism. Aeromed Rev 1:58
Ånell R, Grönkvist M, Eiken O, Gennser M (2019) Nitrogen washout and venous gas emboli during sustained vs. discontinuous high-altitude exposures. Aerosp Med Hum Perform 90(6):524–530. https://doi.org/10.3357/amhp.5207.2019
Ånell R, Grönkvist M, Gennser M, Eiken O (2020) Evolution and preservation of venous gas emboli at alternating high and moderate altitude exposures. Aerosp Med Hum Perform 91(1):11–17. https://doi.org/10.3357/amhp.5447.2020
Arieli R, Marmur A (2011) Decompression sickness bubbles: are gas micronuclei formed on a flat hydrophobic surface? Respir Physiol Neurobiol 177(1):19–23. https://doi.org/10.1016/j.resp.2011.02.013
Arieli R, Marmur A (2017) A biophysical vascular bubble model for devising decompression procedures. Physiol Rep. https://doi.org/10.14814/phy2.13191
Blatteau JE, Gempp E, Galland FM, Pontier JM, Sainty JM, Robinet C (2005) Aerobic exercise 2 hours before a dive to 30 msw decreases bubble formation after decompression. Aviat Space Environ Med 76(7):666–669
Blogg SL, Gennser M (2011) The need for optimisation of post-dive ultrasound monitoring to properly evaluate the evolution of venous gas emboli. Diving Hyperb Med 41(3):139–146
Borg G (1998) Borg’s Perceived exertion and pain scales. In. Human Kinetics, Champaign, pp 44–52
Caldwell JT, Wardlow GC, Branch PA, Ramos M, Black CD, Ade CJ (2016) Effect of exercise-induced muscle damage on vascular function and skeletal muscle microvascular deoxygenation. Physiol Rep. https://doi.org/10.14814/phy2.13032
Christman CL, Catron PW, Flynn ET, Weathersby PK (1986) In vivo microbubble detection in decompression sickness using a second harmonic resonant bubble detector. Undersea Biomed Res 13(1):1–18
Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81(11 Suppl):S52-69. https://doi.org/10.1097/00002060-200211001-00007
Clarkson PM, Nosaka K, Braun B (1992) Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24(5):512–520
DeHart RL, Jeffrey RD (2002) Fundamentals of Aerospace medicine. Decompression sickness, vol 3. Lippincott Williams & Wilkins, Philadelphia
Dervay JP, Powell MR, Butler B, Fife CE (2002) The effect of exercise and rest duration on the generation of venous gas bubbles at altitude. Aviat Space Environ Med 73(1):22–27
Dujic Z, Duplancic D, Marinovic-Terzic I, Bakovic D, Ivancev V, Valic Z, Eterovic D, Petri NM, Wisløff U, Brubakk AO (2004) Aerobic exercise before diving reduces venous gas bubble formation in humans. J Physiol 555(Pt 3):637–642. https://doi.org/10.1113/jphysiol.2003.059360
Dujić Z, Palada I, Valic Z, Duplancić D, Obad A, Wisløff U, Brubakk AO (2006) Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc 38(8):1432–1435. https://doi.org/10.1249/01.mss.0000228936.78916.23
Ebbeling CB, Clarkson PM (1989) Exercise-induced muscle damage and adaptation. Sports Med 7(4):207–234. https://doi.org/10.2165/00007256-198907040-00001
Eckenhoff RG, Olstad CS, Carrod G (1990) Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol (1985) 69(3):914–918. https://doi.org/10.1152/jappl.1990.69.3.914
Eftedal OS, Lydersen S, Brubakk AO (2007) The relationship between venous gas bubbles and adverse effects of decompression after air dives. Undersea Hyperb Med 34(2):99–105
Elia A, Eiken O, Ånell R, Grönkvist M, Gennser M (2021) Whole-body vibration preconditioning reduces the formation and delays the manifestation of high-altitude-induced venous gas emboli. Exp Physiol 106(8):1743–1751. https://doi.org/10.1113/ep089522
Elia A, Ånell R, Eiken O, Grönkvist M, Gennser M (2022) Inter- and intra-rater level of agreement in ultrasonic video grading of venous gas emboli. Aerosp Med Hum Perform 93(1):54–57. https://doi.org/10.3357/amhp.5956.2022
Elmer SJ, Danvind J, Holmberg HC (2013) Development of a novel eccentric arm cycle ergometer for training the upper body. Med Sci Sports Exerc 45(1):206–211. https://doi.org/10.1249/MSS.0b013e318269c79c
Foster PP, Butler BD (2009) Decompression to altitude: assumptions, experimental evidence, and future directions. J Appl Physiol (1985) 106(2):678–690. https://doi.org/10.1152/japplphysiol.91099.2008
Francis T, Mitchell SJ (2003) Bennett and Elliott’s physiology and medicine of diving. Pathophysiology of decompression sickness, vol 3. Elsevier Science, New York
Fridén J, Sjöström M, Ekblom B (1981) A morphological study of delayed muscle soreness. Experientia 37(5):506–507. https://doi.org/10.1007/bf01986165
Fryer DI (1969) Individual factors affecting susceptibility. In: Subatmospheric Decompression Sickness in Man. Technivision Services, England pp 89–114
Gennser M, Jurd KM, Blogg SL (2012) Pre-dive exercise and post-dive evolution of venous gas emboli. Aviat Space Environ Med 83(1):30–34. https://doi.org/10.3357/asem.2893.2012
Gennser M, Blogg SL, Eiken O, Mekjavic IB (2018) Indices of increased decompression stress following long-term bed rest. Front Physiol 9:442. https://doi.org/10.3389/fphys.2018.00442
Gerth WA (2015) On diver thermal status and susceptibility to decompression sickness. Diving Hyperb Med 45(3):208
Hankins TC, Webb JT, Neddo GC, Pilmanis AA, Mehm WJ (2000) Test and evaluation of exercise-enhanced preoxygenation in U-2 operations. Aviat Space Environ Med 71(8):822–826
Harvey EN (1945) Decompression sickness and bubble formation in blood and tissues. Bull N Y Acad Med 21(10):505–536
Hotta K, Behnke BJ, Masamoto K, Shimotsu R, Onodera N, Yamaguchi A, Poole DC, Kano Y (2018) Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy. J Appl Physiol (1985) 125(2):369–380. https://doi.org/10.1152/japplphysiol.00046.2018
Houston CS, Nuzie S, Seitz CP, Besson GE (1944) Studies on factors affecting incidence of bends in low pressure chamber runs. Altitude Training Unit USNAS, Miami
Jankowski LW, Nishi RY, Eaton DJ, Griffin AP (1997) Exercise during decompression reduces the amount of venous gas emboli. Undersea Hyperb Med 24(2):59–65
Jankowski LW, Tikuisis P, Nishi RY (2004) Exercise effects during diving and decompression on postdive venous gas emboli. Aviat Space Environ Med 75(6):489–495
Jones DA, Newham DJ, Clarkson PM (1987) Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain 30(2):233–242. https://doi.org/10.1016/0304-3959(87)91079-7
Jones SF, Evans GM, Galvin KP (1999) Bubble nucleation from gas cavities—a review. Adv Coll Interface Sci 80(1):27–50. https://doi.org/10.1016/S0001-8686(98)00074-8
Jørgensen A, Foster PP, Eftedal I, Wisløff U, Paulsen G, Havnes MB, Brubakk AO (2013) Exercise-induced myofibrillar disruption with sarcolemmal integrity prior to simulated diving has no effect on vascular bubble formation in rats. Eur J Appl Physiol 113(5):1189–1198. https://doi.org/10.1007/s00421-012-2537-z
Jørgensen A, Ekdahl A, Havnes MB, Eftedal I (2015) Eccentric exercise 48 h prior to simulated diving has no effect on vascular bubble formation in rats. Eur J Appl Physiol 115(3):597–605. https://doi.org/10.1007/s00421-014-3046-z
Jurd KM, Thacker JC, Seddon FM, Gennser M, Loveman GA (2011) The effect of pre-dive exercise timing, intensity and mode on post-decompression venous gas emboli. Diving Hyperb Med 41(4):183–188
Karlsson LL, Blogg SL, Lindholm P, Gennser M, Hemmingsson T, Linnarsson D (2009) Venous gas emboli and exhaled nitric oxide with simulated and actual extravehicular activity. Respir Physiol Neurobiol 169(Suppl 1):S59-62. https://doi.org/10.1016/j.resp.2009.04.003
Kim C, Choi WJ, Ng Y, Kang W (2021) Mechanically induced cavitation in biological systems. Life (basel). https://doi.org/10.3390/life11060546
Krutz RW Jr, Dixon GA (1987) The effects of exercise on bubble formation and bends susceptibility at 9100 m (30,000 ft; 4.3 psia). Aviat Space Environ Med 58(9 Pt 2):A97–A99
Lavender AP, Nosaka K (2006) Changes in fluctuation of isometric force following eccentric and concentric exercise of the elbow flexors. Eur J Appl Physiol 96(3):235–240. https://doi.org/10.1007/s00421-005-0069-5
Lee YC, Wu YC, Gerth WA, Vann RD (1993) Absence of intravascular bubble nucleation in dead rats. Undersea Hyperb Med 20(4):289–296
Lindstedt SL, LaStayo PC, Reich TE (2001) When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci 16:256–261. https://doi.org/10.1152/physiologyonline.2001.16.6.256
Loftin KC, Conkin J, Powell MR (1997) Modeling the effects of exercise during 100% oxygen prebreathe on the risk of hypobaric decompression sickness. Aviat Space Environ Med 68(3):199–204
MacIntyre DL, Reid WD, McKenzie DC (1995) Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med 20(1):24–40. https://doi.org/10.2165/00007256-199520010-00003
Mekjavic IB, Exner JA, Tesch PA, Eiken O (2000) Hyperbaric oxygen therapy does not affect recovery from delayed onset muscle soreness. Med Sci Sports Exerc 32(3):558–563. https://doi.org/10.1097/00005768-200003000-00002
Moldoveanu AI, Shephard RJ, Shek PN (2001) The cytokine response to physical activity and training. Sports Med 31(2):115–144. https://doi.org/10.2165/00007256-200131020-00004
Newham DJ (1988) The consequences of eccentric contractions and their relationship to delayed onset muscle pain. Eur J Appl Physiol Occup Physiol 57(3):353–359. https://doi.org/10.1007/bf00635995
Newham DJ, Mills KR, Quigley BM, Edwards RH (1983) Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci (lond) 64(1):55–62. https://doi.org/10.1042/cs0640055
Newham DJ, Jones DA, Clarkson PM (1987) Repeated high-force eccentric exercise: effects on muscle pain and damage. J Appl Physiol (1985) 63(4):1381–1386. https://doi.org/10.1152/jappl.1987.63.4.1381
Peake JM, Neubauer O, Della Gatta PA, Nosaka K (2017) Muscle damage and inflammation during recovery from exercise. J Appl Physiol (1985) 122(3):559–570. https://doi.org/10.1152/japplphysiol.00971.2016
Peñailillo L, Blazevich A, Numazawa H, Nosaka K (2013) Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med Sci Sports Exerc 45(9):1773–1781. https://doi.org/10.1249/MSS.0b013e31828f8a73
Pilmanis AA, Olson RM, Fischer MD, Wiegman JF, Webb JT (1999) Exercise-induced altitude decompression sickness. Aviat Space Environ Med 70(1):22–29
Pontier JM, Lambrechts K (2014) Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression. Eur J Appl Physiol 114(6):1175–1181. https://doi.org/10.1007/s00421-014-2841-x
Prasartwuth O, Taylor JL, Gandevia SC (2005) Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles. J Physiol 567(Pt 1):337–348. https://doi.org/10.1113/jphysiol.2005.087767
Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537(Pt 2):333–345. https://doi.org/10.1111/j.1469-7793.2001.00333.x
Stacy MR, Bladon KJ, Lawrence JL, McGlinchy SA, Scheuermann BW (2013) Serial assessment of local peripheral vascular function after eccentric exercise. Appl Physiol Nutr Metab 38(12):1181–1186. https://doi.org/10.1139/apnm-2012-0448
Stauber WT, Clarkson PM, Fritz VK, Evans WJ (1990) Extracellular matrix disruption and pain after eccentric muscle action. J Appl Physiol (1985) 69(3):868–874. https://doi.org/10.1152/jappl.1990.69.3.868
Stepanek J (2002) Decompression sickness. Fundamentals of Aerospace Medicine, 3rd edn. Lipincott Williams & Wilkins, Philadelphia, pp 67–98
Theunissen S, Balestra C, Boutros A, De Bels D, Guerrero F, Germonpré P (2015) The effect of pre-dive ingestion of dark chocolate on endothelial function after a scuba dive. Diving Hyperb Med 45(1):4–9
Thompson JW, Stewart CB, Warwick OH, Bateman GL, Milne DJ and Gray DE (1944) Relationship of certain factors to the incidence of decompression sickness. Appendix II, Report to the NRC,. Flying Personel Medical Section, Canada
Van Liew HD, Flynn ET (2005) Direct ascent from air and N2–O2 saturation dives in humans: DCS risk and evidence of a threshold. Undersea Hyperb Med 32(6):409–419
Vann RD, Grimstad J, Nielsen CH (1980) Evidence for gas nuclei in decompressed rats. Undersea Biomed Res 7(2):107–112
Vann RD, Thalmann ED. (1993) Decompression physiology and practice. In: Bennett PB, Elliott DH (Eds.) The Physiology and Medicine of Diving (vol 4., pp. 376–432). W.B Saunders Company Ltd., Philadelphia
Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27(1):43–59. https://doi.org/10.2165/00007256-199927010-00004
Webb JT, Pilmanis AA (1999) Preoxygenation time versus decompression sickness incidence. Safe J 29(2):75–78
Webb JT, Fischer MD, Heaps CL, Pilmanis AA (1996) Exercise-enhanced preoxygenation increases protection from decompression sickness. Aviat Space Environ Med 67(7):618–624
Webb JT, Kannan N, Pilmanis AA (2003) Gender not a factor for altitude decompression sickness risk. Aviat Space Environ Med 74(1):2–10