Early inflation, isotropization, and late time acceleration in a Bianchi type-I universe

Pleiades Publishing Ltd - Tập 40 - Trang 656-673 - 2009
B. Saha1
1Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Tóm tắt

A system of Einstein equations is solved for the Bianchi type-I metrics that describes a homogeneous and isotropic Universe. The system contains nonlinear differential equations of the second-order, which depend only on time. The method of solution is described, and the general form of the solution is found. Explicit analytical expressions are obtained in some particular cases. Numerical integration is used to describe possible solution types in the general case. The evolution of the Universe has been investigated in the presence of different types of sources, namely, a perfect fluid, a van der Waals fluid, the cosmological constant, quintessence, a Chaplygin gas, a modified quintessence, and a nonlinear spinor field. It is shown that the presence of a van der Waals fluid leads to inflation in the early stage of evolution, while the modified quintessence leads to a cyclic or oscillating Universe. It has been shown, that for some special choice of parameters the late time acceleration can be attributed to the influence of a nonlinear spinor field.

Tài liệu tham khảo

B. M. Barbashov, V. N. Pervushin, and D. V. Proskurin, “An Excursus into Modern Cosmology,” Fiz. Elem. Chastits At. Yadra 34(7), 137–189 (2003) [Phys. Part. Nucl. 34, 68–90 (2003)].

Ya. B. Zeldovich, “Magnetic Model of the Universe,” Zh. Eksp. Teor. Fiz. 48, 986–988 (1970) [Sov. Phys. JETP 21, 656 (1970)].

V. N. Lukash and A. A. Starobinskii, “Isotropisation of Cosmological Expansion at the Cost of Particle Production Effect,” Zh. Eksp. Teor. Fiz. 66, 1515–1527 (1974) [Sov. Phys. JETP 39, 742 (1974)].

R. Bean and O. Dore, “Are Chaplygin Gases Serious Contenders to the Dark Energy Throne?,” Phys. Rev. D 68, 023515 (2003).

M. C. Bento, O. Bertolami, and A. A. Sen, “Generalized Chaplygin Gas and CMBR Constraints,” Phys. Rev. D 67, 063003 (2003).

M. Biesiada, W. Godlowski, and M. Szydlowski, “Generalized Chaplygin Gas Models Tested with SNIa,” Astrophys. J. 622, 28–38 (2005), astroph/0403305.

R. Colistete, J. C. Fabris, S. V. Goncalvez, and P. E. de Souza, “Dark Energy, Dark Matter and the Chaplygin Gas,” gr-qc/0210079.

M. P. Dabrowski, “Phantom Dark Energy and its Cosmological Consequences,” gr-qc/0701057v1.

M. Fierz, “Zur Fermischen Theorie des β-Zerfalls,” Zeitschrift Phys. A, Hadrons and Nucl. 104, 553–65 (1937).

A. A. Friedmann, “Uber Die Krummung Des Raumes,” Z. Phys. 10, 377–386 (1922).

R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, “Scalar-Tensor Dark Energy Models,” arXiv:astroph/0701650v1 (2007).

V. Gorini, A. Kamenshchik, U. Moschella, and V. Pasquier, “The Chaplygin Gas as a Model for Dark Energy,” gr-qc/0403062.

T. Harko and M. K. Mak, “Decelerating Causal Bulk Viscous Cosmological Models,” Intern. J. Mod. Phys. D 9, 97–110 (2000).

S. W. Hawking and R. J. Taylor, “Helium Production in Anisotropic Big Bang Universe,” Nature 299, 1278 (1966).

R. Jackiw, “A Particle Field Theorist’s Lectures on Supersymmetric, Non-Abelian Fluid Mechanics and d-Branes,” physics/0010042.

P. Jordan, “Zum Gegenwartigen Stand der Diracschen Kosmologischen Hypothesen,” Zeitschrift Phys. A, Hadrons and Nucl. 157, 112–121 (1959).

G. H. Lemaitre, “L’Univers en Expansion,” Ann. Soc. Sci. Brux. A 53, 51–85 (1933).

N. Ogawa, “A Note on Classical Solution of Chaplygin Gas as D-Brane,” Phys. Rev. D 62, 085023 (2000).

D. Pavon, S. Sen, and W. Zimdahl, “CMB Constraints on Interacting Cosmological Models,” JCAP 0405, 009 (2004); astro-ph/0402067.

Bijan Saha, “Dirac Spinor in Bianchi-I Universe with Time Dependent Gravitational and Cosmological Constants,” Mod. Phys. Lett. A 16, 1287–1296 (2001).

Bijan Saha, “Spinor Field and Accelerated Regimes in Cosmology,” Gravit. Cosmol. 12, 215–218 (2006).

V. Sahni and A. A. Starobinsky, “The Case for a Positive Cosmological Λ Term,” Intern. J. Mod. Phys. D 9, 373–443 (2000).

A. Sen, “Rolling Tachyon,” J. High Energy Phys. 0204, 048 (2002).

A. Sen, “Field Theory of Tachyon Matter,” Mod. Phys. Lett. A 17, 1797–1804 (2002).

Y. Shao and Y. Gui, “Statefinder Parameters for Tachyon Dark Energy Model,” arXiv:gr-qc/0703111v1.

Y. Shao, Y. X. Gui, and W. Wang, “Parametrization of Tachyon Field,” Mod. Phys. Lett. A 22, 1175–1181 (2007).

S. K. Srivastava, “Tachyon as a Dark Energy,” arXiv:gr-qc/0409074v4.

K. S. Thorne, “Effect of a Primordial Magnetic Field on the Dynamics of the Universe,” Bull. Amer. Phys. Soc. 11, 340 (1966).