ESR studies of nanocrystalline silicon films obtained by pulsed laser ablation of silicon targets

Semiconductors - Tập 38 - Trang 598-602 - 2004
V. Ya. Bratus1, S. M. Okulov1, É. B. Kaganovich1, I. M. Kizyak1, É. G. Manoilov1
1Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

Tóm tắt

Nanocrystalline silicon films formed using laser ablation of silicon targets were studied using electron spin resonance. The measurements were performed in the X band with modulation of the magnetic field at a frequency of ∼100 kHz at temperatures of 300 and 77 K. Two types of spectra were observed. The first type of spectra is related to the high concentration of dangling silicon bonds in Si nanocrystals and SiOx sheaths of nanocrystals and are inherent in nanocrystalline silicon (nc-Si) films that do not exhibit photoluminescence in the visible region of the spectrum. The second type of spectra is related to the presence of E′ centers, nonbridging oxygen hole centers (NBOHC), and peroxide radicals and is characteristic of films with photoluminescence in the visible region of the spectrum, which indicates that high-barrier SiO2 layers exist in these films. An increase in the photoluminescence intensity and a decrease in the signal of electron spin resonance were observed in porous nc-Si films exposed to atmospheric air for a long time.

Tài liệu tham khảo

V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 1046 (1991). L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990). D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, et al., Science 273, 898 (1996). L. Patrone, D. Nelson, V. I. Safarov, et al., J. Appl. Phys. 87, 3829 (2000). E. B. Kaganovich, A. A. Kudryavtsev, E. G. Manoilov, et al., Thin Solid Films 349, 298 (1999). E. S. Demidov, V. V. Karzinov, and N. E. Demidova, in Proceedings of the Conference on Nanophotonics (Nizhni Novgorod, 2003), p. 48. P. K. Kashkarov, E. A. Konstantinova, and V. Yu. Timoshenko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 1479 (1996) [Semiconductors 30, 778 (1996)]. M. Schoisswohl, J. L. Cantin, H. J. von Bardeleben, and J. Amato, Appl. Phys. Lett. 66, 3660 (1995). V. Ya. Bratus, M. Ya. Valakh, I. P. Vorona, et al., J. Lumin. 80, 269 (1999). B. Garrido Fernandez, M. Lopez, C. Garcia, et al., J. Appl. Phys. 91, 798 (2002). A. V. Sachenko, É. B. Kaganovich, É. G. Manoilov, and S. V. Svechnikov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 1445 (2001) [Semiconductors 35, 1383 (2001)]. É. B. Kaganovich, É. G. Manoilov, and S. V. Svechnikov, Ukr. Fiz. Zh. 46, 1196 (2001). É. B. Kaganovich, É. G. Manoilov, I. R. Bazylyuk, and S. V. Svechnikov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 353 (2003) [Semiconductors 37, 336 (2003)]. É. B. Kaganovich, I. M. Kizyak, S. I. Kirillova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 1105 (2002) [Semiconductors 36, 1027 (2002)]. M. H. Brodsky and R. S. Title, Phys. Rev. Lett. 23, 581 (1969). E. Holzenkampfer, F.-W. Richter, J. Stuke, and U. Voget-Grote, J. Non-Cryst. Solids 32, 327 (1979). W. L. Warren, E. H. Poindexter, M. Offenberg, and W. Muller-Warmuth, J. Electrochem. Soc. 139, 872 (1992). M. Stapelbroek, D. L. Griscom, E. J. Friebele, and G. H. Sigel, Jr., J. Non-Cryst. Solids 32, 313 (1979). R. A. Weeks, R. H. Magruder III, and P. W. Wang, J. Non-Cryst. Solids 149, 122 (1992). D. L. Griscom and E. J. Frieble, Phys. Rev. B 24, 4896 (1981).