ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae carriage among veterinary healthcare workers in the Netherlands

Springer Science and Business Media LLC - Tập 10 - Trang 1-12 - 2021
Anouk P. Meijs1, Esther F. Gijsbers1, Paul D. Hengeveld1, Cindy M. Dierikx1, Sabine C. de Greeff1, Engeline van Duijkeren1
1Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands

Tóm tắt

Animals are a reservoir for ESBL/pAmpC-producing Escherichia coli/Klebsiella pneumoniae (ESBL-E/K). We investigated the association between occupational contact with different types of animals and the prevalence of ESBL-E/K carriage among veterinary healthcare workers, assessed molecular characteristics of ESBL-E/K, and followed-up on the ESBL-E/K carriage status of participants and their household members. Participants completed a questionnaire about their contact with animals at work and at home, health status, travel behaviour and hygiene, and sent in a faecal sample which was tested for the presence of ESBL-E/K. Resistance genes were typed using PCR and sequencing. ESBL-E/K positive participants and their household members were followed up after 6 months. Risk factors were analysed using multivariable logistic regression methods. The prevalence of ESBL-E/K carriage was 9.8% (47/482; 95%CI 7.4–12.7). The most frequently occurring ESBL genes were blaCTX-M-15, blaCTX-M-14 and blaDHA-1. The predominant sequence type was ST131. None of the occupation related factors, such as contact with specific animal species, were significantly associated with ESBL-E/K carriage, whereas travel to Africa, Asia or Latin America in the past 6 months (OR 4.4), and stomach/bowel complaints in the past 4 weeks (OR 2.2) were. Sixteen of 33 initially ESBL-E/K positive participants (48.5%) tested positive again 6 months later, in 14 persons the same ESBL gene and E. coli ST was found. Four of 23 (17.4%) household members carried ESBL-E/K, in three persons this was the same ESBL gene and E. coli ST as in the veterinary healthcare worker. Despite the absence of specific occupation related risk factors, ESBL-E/K carriage in veterinary healthcare workers was high compared to the prevalence in the general Dutch population (5%). This indicates that occupational contact with animals is a potential source of ESBL-E/K for the population at large.

Tài liệu tham khảo

Pitout JDD. Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs. 2010;70:313–33. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13:19044. Mughini-Gras L, Dorado-García A, van Duijkeren E, van den Bunt G, Dierikx C, Bonten MJM, et al. Attributable sources of community-acquired carriage of Escherichia coli containing beta-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planet Health. 2019;3:e357–69. Wielders CCH, van Hoek AHAM, Hengeveld PD, Veenman C, Dierikx CM, Zomer TP, et al. Extended-spectrum beta-lactamase- and pAmpC-producing Enterobacteriaceae among the general population in a livestock-dense area. Clin Microbiol Infect. 2017;23:120.e1-e8. van den Bunt G, van Pelt W, Hidalgo L, Scharringa J, de Greeff SC, Schürch AC, et al. Prevalence, risk factors and genetic characterisation of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae (ESBL-E and CPE): a community-based cross-sectional study, the Netherlands, 2014 to 2016. Euro Surveill. 2019;24:1800594. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect. 2012;18:646–55. Hordijk J, Schoormans A, Kwakernaak M, Duim B, Broens E, Dierikx C, et al. High prevalence of fecal carriage of extended spectrum beta-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front Microbiol. 2013;4:242. Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D. Extended-spectrum-beta-lactamase- and AmpC-beta-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J Antimicrob Chemother. 2013;68:60–7. Dohmen W, Bonten MJM, Bos MEH, van Marm S, Scharringa J, Wagenaar JA, et al. Carriage of extended-spectrum beta-lactamases in pig farmers is associated with occurrence in pigs. Clin Microbiol Infect. 2015;21:917–23. Huijbers PMC, Graat EAM, Haenen APJ, van Santen MG, van Essen-Zandbergen A, Mevius DJ, et al. Extended-spectrum and AmpC beta-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: prevalence, risk factors and molecular characteristics. J Antimicrob Chemother. 2014;69:2669–75. van den Bunt G, Fluit AC, Spaninks MP, Timmerman AJ, Geurts Y, Kant A, et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J Antimicrob Chemother. 2020;75:342–50. Hordijk J, Fischer EAJ, van Werven T, Sietsma S, van Gompel L, Timmerman AJ, et al. Dynamics of faecal shedding of ESBL- or AmpC-producing Escherichia coli on dairy farms. J Antimicrob Chemother. 2019;74:1531–8. Toombs-Ruane LJ, Benschop J, French NP, Biggs PJ, Midwinter AC, Marshall JC, et al. Carriage of extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Eschericia coli strain from humand and pets in the same households. Appl Environ Microbiol. 2020;86:e01613-e1620. Meijs AP, Gijsbers EF, Hengeveld PD, Veenman C, van Roon AM, van Hoek AHAM, et al. Do vegetarians less frequently carry ESBL/pAmpC-producing Escherichia coli/Klebsiella pneumoniae compared with non-vegetarians? J Antimicrob Chemother. 2020;75:550–8. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60:1136–51. Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43:4178–82. Voor In ‘t Holt AF, Mourik K, Beishuizen B, van der Schoor AS, Verbon A, Vos MC, et al. Acquisition of multidrug-resistant Enterobacterales during international travel: a systematic review of clinical and microbiological characteristics and meta-analyses of risk factors. Antimicrob Resist Infect Control. 2020;9:71. Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ, Goorhuis A, et al. Import and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis. 2017;17:78–85. Verkola M, Pietola E, Järvinen A, Lindqvist K, Kinnunen PM, Heikinheimo A. Low prevalence of zoonotic multidrug-resistant bacteria in veterinarians in a country with prudent use of antimicrobials in animals. Zoonoses Public Health. 2019;66:667–78. Royden A, Ormandy E, Pinchbeck G, Pascoe B, Hitchings MD, Sheppard SK, et al. Prevalence of faecal carriage of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in veterinary hospital staff and students. Vet Rec Open. 2019;6:e000307. Päivärinta M, Pohjola L, Fredriksson-Ahomaa M, Heikinheimo A, et al. Low occurrence of extended-spectrum beta-lactamase-producing Escherichia coli in Finnish food-producing animals. Zoonoses Public Health. 2016;63:624–31. MARAN Report. Monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2019. 2020. https://www.rivm.nl/bibliotheek/rapporten/2020-0065.pdf. Hordijk J, Farmakioti E, Smit LAM, Duim B, Graveland H, Theelen MJP, et al. Fecal Carriage of Extended-Spectrum-beta-Lactamase/AmpC-Producing Escherichia coli in Horses. Appl Environ Microbiol. 2020;86:e02590-e2619. Apostolakos I, Franz E, van Hoek AHAM, Florijn A, Veenman C, Sloet-van Oldruitenborgh-Oosterbaan MM, et al. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J Antimicrob Chemother. 2017;72:1915–21. Dolejska M, Duskova E, Rybarikova J, Janoszowska D, Roubalova E, Dibdakova K, et al. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother. 2011;66:757–64. So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim S, et al. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn Microbiol Infect Dis. 2012;73:195–9. van den Bunt G, Fluit AC, Bootsma MCJ, van Duijkeren E, Scharringa J, van Pelt W, et al. Dynamics of intestinal carriage of Extended-spectrum Beta-lactamase producing Enterobacteriaceae in the Dutch general population (2014–2016). Clin Infect Dis. 2020;71:1847–55. Dorado-García A, Smid JH, van Pelt W, Bonten MJM, Fluit AC, van den Bunt G, et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: a pooled analysis. J Antimicrob Chemother. 2018;73:339–47. Hennequin C, Ravet V, Robin F. Plasmids carrying DHA-1 beta-lactamases. Eur J Clin Microbiol Infect Dis. 2018;37:1197–209.