EMT and tumor metastasis

Sarah Heerboth1, Genevieve Housman2, Meghan Leary1, Mckenna Longacre3, Shannon Byler1, K Lapińska1, Amber Willbanks1, Sibaji Sarkar1
1Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
2School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
3Harvard Medical School, Boston, MA, USA

Tóm tắt

AbstractEMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them. First, we compare embryogenesis and development with cancer metastasis. We then discuss the signaling pathways and the differential expression and down‐regulation of receptors in both tumor cells and stromal cells, which play a role in EMT and metastasis. We further delve into the clinical implications of EMT and MET in several types of tumors, and lastly, we discuss the role of epigenetic events that regulate EMT/MET processes. We hypothesize that reversible epigenetic events regulate both EMT and MET, and thus, also regulate the development of different types of metastatic cancers.

Từ khóa


Tài liệu tham khảo

10.1007/s10911-010-9178-9

Byler S, 2014, Genetic and epigenetic aspects of breast cancer progression and therapy, Anticancer Res., 34, 1071

10.1126/science.1234850

10.4161/auto.24728

10.1002/wsbm.1224

10.1371/journal.pone.0033183

10.1371/journal.pbio.1001162

Rosenmayr‐Templeton L, 2010, Industry update: The latest developments in therapeutic delivery, Ther Deliv., 1, 369, 10.4155/tde.10.51

10.1016/j.urolonc.2008.09.041

10.1016/j.cell.2009.11.007

10.1002/jcb.21509

10.1016/j.ceb.2003.10.006

10.1186/bcr578

Reik W, 2001, Epigenetic reprogramming in mammalian development, Science., 10, 1089, 10.1126/science.1063443

10.1155/2012/306879

10.1016/j.ccr.2006.09.013

10.3390/ijms141021087

10.2217/epi.14.4

10.1073/pnas.0530291100

Campbell L, 2007, Breast tumor heterogeneity: cancer stem cells or clonal evolution, Cell Cycle., 6, 2332, 10.4161/cc.6.19.4914

10.1172/JCI40724

10.1038/nature12624

10.2217/epi.12.68

10.1016/j.stem.2010.05.018

10.4161/cc.6.6.4022

Grille S, 2003, The protein kinase Akt induces epighelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines, Cancer Res., 63, 2172

10.1101/gad.294104

10.1186/1471-2407-13-108

Zhang K, 2011, Activation of NF‐kB upregulates Snail and consequent repression of E‐cadherin in cholangiocarcinoma cell invasion, Hepatogastroenterology., 58, 1

10.1128/MCB.01315-06

10.1158/0008-5472.CAN-07-2559

Lorenzatti G, 2011, CCN6 (WISP3) decreases ZEB1‐mediated EMT and invasion by attenuation of IGF‐1 receptor signaling in breast cancer, J Cell Sci., 124, 1752, 10.1242/jcs.084194

10.1093/carcin/bgn202

10.1038/ncb1691

10.1016/j.ccr.2010.02.030

Rall C, 1995, CD44 Isoform Expression in Primary and Metastatic Pancreatic Adenocarcinoma, Cancer Res., 55, 1831

10.1172/JCI44540

10.1158/0008-5472.CAN-04-1910

10.1371/journal.pgen.1002218

10.1158/0008-5472.CAN-07-2938

10.1128/MCB.00323-08

10.1093/emboj/20.21.5999

10.1007/s10555-008-9169-0

Shibue T, 2009, Integrin B1‐focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs, Proc Natl Acad Sci U S A., 105, 10290, 10.1073/pnas.0904227106

10.1158/0008-5472.CAN-05-3401

10.1111/j.1582-4934.2011.01419.x

10.1074/jbc.M801125200

10.1126/science.1203543

10.1038/nrm763

10.1158/0008-5472.CAN-11-3498

10.1242/jcs.114.1.111

10.1038/onc.2009.180

Park S, 2007, The dual effects of interleukin‐18 in tumor progression, Cell Mol Immunol., 4, 329

10.1074/jbc.M600200200

10.1097/SHK.0b013e318160f215

10.1186/bcr2333

Andreopoulou E, 2011, Comparison of assay methods for dectection of circulating tumor cells in metastatic breast cancer: AdnaGen Adna Test Breast Cancer Select/Detect versus Veridex Cell Search System, Int J Cancer., 130, 1590, 10.1002/ijc.26111

10.1126/science.1228522

10.1186/1471-2407-12-178

10.1007/s10549-011-1373-x

Surveillance Epidemiology and End Results (SEER) Program SEER*Stat Database: Incidence. SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases Nov2011Sub Vintage 2009 Pops (2000–2009) <Katrina/Rita Population Adjustment<.

10.1038/nrc3447

10.1186/2001-1326-3-17

10.1158/0008-5472.CAN-06-3281

10.1158/1535-7163.MCT-08-0573

10.1111/j.1349-7006.2009.01419.x

10.1002/hep.24254

Shao R, 2004, Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up‐regulation of vascular endothelial growth factor receptor 2 expression, Mol Cell Biol., 24, 2993, 10.1128/MCB.24.9.3992-4003.2004

10.1023/A:1021899904332

10.1007/s10585-012-9465-5

10.1016/j.humpath.2004.10.010

10.1016/j.eururo.2011.01.044

10.1038/nature06174

10.1097/01.ASN.0000106015.29070.E7

10.1016/j.humpath.2014.05.001

Lee M, 2008, Epithelial‐mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up‐regulation, Clin Cancer Res., 14, 4743, 10.1158/1078-0432.CCR-08-0234

SchlegelNC vonPlantaA WidmerDS DummerR ChristoforiG.PI3K signalling is required for a TGFβ‐induced epithelial‐mesenchymal‐like transition (EMT‐like) in human melanoma cells. Exp Dermatol.2014 doi:https://doi.org/10.1111/exd.12580.

10.3389/fonc.2014.00367

10.1126/science.1088759

10.1007/s13277-014-2540-6

10.1007/s13277-014-2537-1

ChoiMJ ChoKH LeeS BaeYJ JeongKJ RhaSY et al.hTERT mediates norepinephrine‐induced Slug expression and ovarian cancer aggressiveness. Oncogene.2014Aug 25;0. doi:https://doi.org/10.1038/onc.2014.270. [Epub ahead of print] PubMed PMID: 25151968

10.1002/(SICI)1097-0142(19971015)80:8 <1529::AID-CNCR2>3.0.CO;2-F

10.1158/1535-7163.MCT-12-0460

10.1158/1078-0432.CCR-07-1042

Gamallo C, 1993, Correlation of E‐cadherin expression with differentiation grade and histological type in breast carcinoma, Am J Pathol., 142, 987

10.1158/1078-0432.CCR-04-0894

Li L, 2000, Frequent Methylation of estrogen receptor in prostate cancer: correlation with tumor progression, Cancer Res., 60, 702

10.1002/cncr.22852

10.1371/journal.pone.0016530

10.3390/cancers2042058

10.1053/j.gastro.2007.04.061

10.1053/j.gastro.2005.09.055

10.1172/JCI24282

Zhang J, 2013, Sorafenib inhibits epithelial‐mesenchymal transition through an epigenetic‐based mechanism in human lung epithelial cells, PLOS., 8, e64954, 10.1371/journal.pone.0064954

10.4161/onci.27220

10.1158/0008-5472.CAN-07-2460

10.1016/j.jss.2003.11.006

Clintron J, 1996, Colorectal cancer and peritoneal carcinomatosis, Semin Surg Oncol., 12, 267, 10.1002/(SICI)1098-2388(199607/08)12:4<267::AID-SSU6>3.0.CO;2-3

Cho SH, 2012, CD44 enhances the epithelial‐mesenchymal transition in association with colon cancer invasion, Int J Oncol., 41, 211

Paláez‐García A, 2013, FGFR4 role in epithelial‐mesenchymal transition and its therapeutic value in colorectal cancer, PLoS One., 8, e63695, 10.1371/journal.pone.0063695

10.1038/sj.bjc.6603651

10.1016/S1470-2045(04)01529-3

10.1016/j.canlet.2014.06.007

10.1093/jnci/djn123

10.1084/jem.135.4.719

Sonmez H, 1995, Tissue fibronectin levels of human prostatic cancer, as a tumor marker, Cancer Biochem Biophys., 15, 107

10.1096/fasebj.10.10.8751720

Ricciardelli C, 1998, Elevated levels of versican but not decorin predict disease progression in early‐stage prostate cancer, Clin Cancer Res., 4, 963

10.1016/0046-8177(93)90112-T

10.1007/s004180050391

10.1158/0008-5472.CAN-05-2763

10.1016/j.carres.2014.01.010

Becker‐Sanos DD, 2012, Integrin‐linked kinase as a target for ERG‐mediated invasive properties in prostate cancer models, Carcinogenesis., 33, 2558, 10.1093/carcin/bgs285

10.2147/OTT.S60358

10.1093/toxsci/kft150

10.3390/cancers6031769

10.4137/GEG.S12270

10.1038/nm.3336

10.1083/jcb.127.6.2021

Yoshikawa M, 2005, Inhibition of histone deacetylases activity suppresses epithelial‐to‐mesenchymal transition induced by TGF‐ β1 in human renal epithelial cells, J Am Soc Nephrol., 18, 158

Mataga M, 2012, Anti‐breast cancer effects of histone deacetylases inhibitors and calpain inhibitor, Anticancer Res., 32, 2525

Sarkar S, 2011, Histone deacetylases inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling, Anticancer Res., 31, 2723

SarkarS LongacreM TaturN HeerbothS andLapinskaK:Histone deacetylases (HDACs): function mechanism and inhibition. Encyclopedia of Analytical Chemistry2014 doi:https://doi.org/10.1002/9780470027318.a9365.

10.1158/1078-0432.CCR-06-0467

10.1038/35065016

10.1093/hmg/ddt375

10.1016/j.stem.2010.04.015

10.1074/jbc.M111.280768

10.1016/j.cell.2013.06.026

Song S, 2013, The oncogenic microRNA miR‐22 targets the TET2 tumor suppressor to promote hepatopoietic stem cell self‐renewal and transformation, Cell Stem Cell., 13, 87, 10.1016/j.stem.2013.06.003

10.1038/cddis.2014.367

10.1038/onc.2011.60

10.1016/j.canlet.2013.01.033

10.1093/hmg/10.23.2619

10.1039/c2mb25070e

SunT WongN.Transforming growth factor‐β–induced long noncoding RNA promotes liver cancer metastasis via RNA–RNA crosstalk. Hepatology.2015 doi:https://doi.org/10.1002/hep.27599.

10.1038/cddis.2014.256

10.1016/j.cellsig.2013.10.001

Cristofanili M, 2004, Circulating tumor cells, disease progression, and survival in breast cancer, N Engl J Med., 351, 781, 10.1056/NEJMoa040766

SamorodnitskyE GhoshE MazumderS SarkarS.Methylation by DNMT1 is more Efficient in Chronic Lymphocytic Leukemia Cells than in Normal Cells. J Proteomics Bioinform.2014;S10:004.

10.1101/gr.144899.112

10.1016/j.cell.2014.09.030

10.1101/gr.163485.113