EM for phylogenetic topology reconstruction on nonhomogeneous data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kelchner SA, Thomas MA: Model use in phylogenetics: nine key questions. Trends Ecol Evol. 2007, 22 (2): 87-94. 10.1016/j.tree.2006.10.004.
Ripplinger J, Sullivan J: Assessment of substitution model adequacy using frequentist and Bayesian methods. Mol Biol Evol. 2010, 27 (12): 2790-2803. 10.1093/molbev/msq168.
Jermiin LS, Ho SY, Ababneh F, Robinson J, Larkum AW: The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst Biol. 2004, 53 (4): 638-643. 10.1080/10635150490468648.
Galtier N, Gouy M: Inferring pattern and process: maximum likelihood implementation of a non-homogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol. 1998, 154 (4): 871-879.
Yang Z, Yoder AD: Estimation of the transition/transversion rate bias and species sampling. J Mol Evol. 1999, 48: 274-283. 10.1007/PL00006470.
Ranwez V, Gascuel O: Quartet-based phylogenetic inference: improvements and limits. Mol Biol Evol. 2001, 18 (6): 1103-1116. 10.1093/oxfordjournals.molbev.a003881.
Anderson FE, Swofford DL: Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol. 2004, 33 (2): 440-451. 10.1016/j.ympev.2004.06.015.
Semple C, Steel M: Phylogenetics, Volume 24 of Oxford Lecture Series in Mathematics and its Applications. 2003, Oxford: Oxford University Press
Jayaswal V, Jermiin LS, Robinson J: Estimation of phylogeny using a general Markov model. Evolutionary Bioinformatics Online. 2005, 1: 62-
Allman ES, Rhodes JA: Phylogenetic invariants. Reconstructing Evolution. Edited by Gascuel O, Steel M. 2007, New York: Oxford University Press
Barry D, Hartigan JA: Statistical analysis of hominoid molecular evolution. Stat Sci. 1987, 2 (2): 191-207. 10.1214/ss/1177013353.
Evans S, Speed T: Invariants of some probability models used in phylogenetic inference. Ann Statist. 1993, 21: 355-377. 10.1214/aos/1176349030.
Kimura M: Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA. 1981, 78: 454-458. 10.1073/pnas.78.1.454.
Dempster A, Laird N, Rubin D: Maximum likelihood estimation from incomplete data via the EM algorithm. J Roy Stat Soc. 1977, 39: 1-38.
McLachlan G, Krishnan T: The EM Algorithm and Extensions, Volume 382. 2007, New York: Wiley-Interscience
Kedzierska AM, Casanellas M: EMpar: EM-based algorithm for parameter estimation of Markov models on trees. [http://arxiv.org/abs/1207.1236],
Huelsenbeck J: Performance of phylogenetic methods in simulation. Syst Biol. 1995, 44: 17-48. 10.1093/sysbio/44.1.17.
Ho SY, Jermiin LS: Tracing the decay of the historical signal in biological sequence data. Syst Biol. 2004, 53 (4): 623-637. 10.1080/10635150490503035.
Willson SJ: Building phylogenetic trees from quartets by using local inconsistency measures. Mol Biol Evol. 1999, 16: 685-693. 10.1093/oxfordjournals.molbev.a026151.
Department of Computer Science, Iowa State University: QuartetSuite by Raul Piaggio. [http://genome.cs.iastate.edu/CBL/download/],
Creevey CJ, McInerney JO: Clann: investigating phylogenetic information through supertree analyses. Bioinformatics. 2005, 21: 390-392. 10.1093/bioinformatics/bti020.
Dutheil J, Boussau B: Non-homogeneous models of sequence evolution in the Bio++ suite of libraries and programs. BMC Evol Biol. 2008, 8: 255-10.1186/1471-2148-8-255.
Strimmer K, Goldman N, von Haeseler A: Bayesian probabilities and quartet puzzling. Mol Biol Evol. 1997, 14 (2): 210-10.1093/oxfordjournals.molbev.a025756.
Felsenstein J: Inferring Phylogenies. 2004, Sunderland: Sinauer Associates
Szekely LA, Steel MA, Erdos P: Fourier calculus on evolutionary trees. Adv Appl Math. 1993, 14 (2): 200-216. 10.1006/aama.1993.1011.
Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS. 1997, 15: 555-556. [http://abacus.gene.ucl.ac.uk/software/paml.html],
Kedzierska AM, Casanellas M: GenNon-h: generating multiple sequence alignments on nonhomogeneous phylogenetic trees. BMC Bioinformatics. 2012, 13: 216-10.1186/1471-2105-13-216.
Rambaut A, Grassly N: Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci. 1997, 13: 235-238.
Jermiin LS, Ho SY, Ababneh F, Robinson J, Larkum AW: Hetero: a program to simulate the evolution of DNA on a four-taxon tree. Appl Bioinformatics. 2003, 2 (3): 159-163.
Sukumaran J, Holder MT: DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010, 26: 1569-1571. 10.1093/bioinformatics/btq228.