EGF Enhances ADSCs Secretion via ERK and JNK Pathways

Cell Biochemistry and Biophysics - Tập 69 Số 1 - Trang 189-196 - 2014
Qiang Li1, Peihua Li2, Dianju Hou3, Aijun Zhang1, Changbo Tao1, Xueyang Li1, Peisheng Jin1
1Plastic Surgery Department, Xuzhou Medical College Affiliated Hospital, 99 Huaihai Road West, Xuzhou, 221002, Jiangsu, China
2Department of Otolaryngology, Xuzhou Medical College Affiliated Hospital, Xuzhou, Jiangsu, China
3Face and Neck Plastic Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zandonella, C. (2003). Tissue engineering: The beat goes on. Nature, 421, 884–886.

Polykandriotis, E., Arkudas, A., Horch, R. E., Stürzl, M., & Kneser, U. (2007). Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. Journal of Cellular and Molecular Medicine, 11, 6–20.

Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: A better stem cell than BMSC. Cell Research, 26, 664–675.

Fraser, J. K., Schreiber, R., Strem, B., Zhu, M., Alfonso, Z., Wulur, I., et al. (2006). Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nature Clinical Practice Cardiovascular Medicine, 3S, 33–37.

Nishimatsu, H., Suzuki, E., Kumano, S., Nomiya, A., Liu, M., Kume, H., et al. (2012). Adrenomedullin mediates adipose tissue-derived stem cell-induced restoration of erectile function in diabetic rats. Journal of Sexual Medicine, 9, 482–493.

Shoji, T., Ii, M., Mifune, Y., Matsumoto, T., Kawamoto, A., Kwon, S. M., et al. (2010). Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Laboratory Investigation, 90, 637–649.

Zhu, Y., Liu, T., Song, K., Jiang, B., Ma, X., & Cui, Z. (2009). Collagen–chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. Journal of Materials Science Materials in Medicine, 20, 799–808.

Tamama, K., Kawasaki, H., & Wells, A. (2010). Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. Journal of Biomedicine and Biotechnology, 2010, 795385.

Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Multilinage cells from human adipose tissue: Implications for cell based therapies. Tissue Engineering, 7, 211–228.

Liu, S., Zhang, H., Zhang, X., Lu, W., Huang, X., Xie, H., et al. (2011). Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Engineering Part A, 17, 725–739.

Nie, C., Yang, D., Xu, J., Si, Z., Jin, X., & Zhang, J. (2011). Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplantation, 20, 205–216.

Colazzo, F., Chester, A. H., Taylor, P. M., & Yacoub, M. H. (2010). Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. Journal of Heart Valve Disease, 19, 736–744.

Kondo, K., Shintani, S., Shibata, R., Murakami, H., Murakami, R., Imaizumi, M., et al. (2009). Implantation of adipose derived regenerative cells enhances ischemia induced angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 61–66.

Cai, L., Johnstone, B. H., Cook, T. G., Tan, J., Fishbein, M. C., Chen, P. S., et al. (2009). IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells, 27, 230–237.

Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9, 669–676.

Saiki, A., Watanabe, F., Murano, T., Miyashita, Y., & Shirai, K. (2006). Hepatocyte growth factor secreted by cultured adipocytes promotes tube formation of vascular endothelial cells in vitro. International Journal of Obesity (London), 30, 1676–1684.

Rosová, I., Dao, M., Capoccia, B., Link, D., & Nolta, J. A. (2008). Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 26, 2173–2182.

Nakao, N., Nakayama, T., Yahata, T., Muguruma, Y., Saito, S., Miyata, Y., et al. (2010). Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. American Journal of Pathology, 177, 547–554.

Crisostomo, P. R., Wang, Y., Markel, T. A., Wang, M., Lahm, T., & Meldrum, D. R. (2008). Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism. American Journal of Physiology, 294, C675–C682.

Wang, Y., Crisostomo, P. R., Wang, M., Markel, T. A., Novotny, N. M., & Meldrum, D. R. (2008). TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. American Journal of Physiology, 295, R1115–R1123.

Wang, Y., Wang, M., Abarbanell, A. M., Weil, B. R., Herrmann, J. L., Tan, J., et al. (2009). MEK mediates the novel cross talk between TNFR2 and TGF-EGFR in enhancing vascular endothelial growth factor (VEGF) secretion from human mesenchymal stem cells. Surgery, 146, 198–205.

Kajanne, R., Leppä, S., Luukkainen, P., Ustinov, J., Thiel, A., Ristimäki, A., et al. (2007). Hydrocortisone and indomethacin negatively modulate EGF-R signaling in human fetal intestine. Pediatric Research, 62, 570–575.

Long, J. L., Zuk, P., Berke, G. S., & Chhetri, D. K. (2010). Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope, 120, 125–131.

Zavan, B., Michelotto, L., Lancerotto, L., Della Puppa, A., D’Avella, D., Abatangelo, G., et al. (2010). Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurological Research, 32, 47–54.

Chang, J. C., Lee, P. C., Lin, Y. C., Lee, K. W., & Hsu, S. H. (2011). Primary adipose-derived stem cells enriched by growth factor treatment improves cell adaptability toward cardiovascular differentiation in a rodent model of acute myocardial infarction. Stem Cells, 6, 21–37.

Wetzker, R., & Böhmer, F. D. (2003). Transactivation joins multiple tracks to the ERK/MAPK cascade. Nature Reviews Molecular Cell Biology, 4, 651–657.

Gan, Y., Shi, C., Inge, L., Hibner, M., Balducci, J., & Huang, Y. (2010). Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene, 29, 4947–4958.

Plotnikov, A., Zehorai, E., Procaccia, S., & Seger, R. (2010). The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta, 1813, 1619–1633.

Nakamura, S., Chikaraishi, Y., Tsuruma, K., Shimazawa, M., & Hara, H. (2010). Ruboxistaurin, a PKCbeta inhibitor, inhibits retinal neovascularization via suppression of phosphorylation of ERK1/2 and Akt. Experimental Eye Research, 90, 137–145.

Pang, X., Yi, T., Yi, Z., Cho, S. G., Qu, W., Pinkaew, D., et al. (2009). Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Research, 69, 518–525.

Sabri, A., Ziaee, A. A., Ostad, S. N., Alimoghadam, K., & Ghahremani, M. H. (2011). Crosstalk of EGF-directed MAPK signalling pathways and its potential role on EGF-induced cell proliferation and COX-2 expression in human mesenchymal stem cells. Cell Biochemistry and Function, 29, 64–70.

Miura, S., Matsuo, Y., & Saku, K. (2008). Jun N-terminal kinase inhibitor blocks angiogenesis by blocking VEGF secretion and an MMP pathway. Journal of Atherosclerosis and Thrombosis, 15, 69–74.